论文简读
冷帅醒
这个作者很懒,什么都没留下…
展开
-
时空分析与 CNN 的交通流量短时预测方法
1.文中提出了一种结合时空分析的卷积神经网络cnn深度学习框架的交通流量短时预测模型。如何构造二维矩阵?? 2.时空特征选择算法定义最佳的输入时间 间隔和空间数据量。通过相关性分析和时空特征选择算法(STFSA)确定有效的输入数据,通过 STFSA 确定佳的输入数据的时间滞后和空间路段的数量 3.从实际的交通流量数据中提取选定的交通流量数据并转化为具有 时空交通流量信息的二维矩阵。 利用皮尔森系数...原创 2019-10-15 17:30:55 · 3542 阅读 · 0 评论 -
综述:深度学习在交通运用
Enhancing transportation systems via deep learning: A survey 1.框架 文中结构 第一章前言,介绍整体大情况。 第二章各类深度学习的先验知识。 第三章Visual recognition tasks in ITS ,交通标志牌的识别。数据集: GTSRB ,从机器学习到深度学习,准确率99以上。 第四章 Traffic state p...原创 2019-10-15 11:15:42 · 1419 阅读 · 0 评论 -
SAEs
论文简读 摘要:利用历史刷卡数据,提出了一种基于深度学习的地铁短时客流量预测方法,基于栈式自编码器构建深度神经网络模型,采用自下而上逐层非监督预训练,在预训练结束之后,采用反向传播BP算法自上而下来微调整个网络的参数。 模型-基于SAE的深度学习 该模型底层由栈式自编码器构成,用于特征提 取;顶层为一个逻辑回归器,用于客流量预测。 AE ,自动编码器 AE(AutoEncoder)是一种试图重构...原创 2019-09-05 17:30:17 · 2171 阅读 · 0 评论