Enhancing transportation systems via deep learning: A survey
1.框架
文中结构
- 第一章前言,介绍整体大情况。
- 第二章各类深度学习的先验知识。
- 第三章Visual recognition tasks in ITS ,交通标志牌的识别。数据集: GTSRB ,从机器学习到深度学习,准确率99以上。
- 第四章 Traffic state prediction
- 交通流量预测(TFP):数据集:PeMS,cnn+lstm效果最佳。
- 交通速度预测(TSP):最新为 ST-GCNN
- Travel Time Prediction (TTP) :时空模型与lstm,未发现cnn在此方面的应用。
- 第五章:其他任务
- ** Traffic tensor prediction **:rnn解决起讫点之间的交通流量,时空残差网络解决功能区域之间的人群流动,(Spatial–Temporal Neural Network解决旅行时间。交通需求预测(乘客需求优化公交车与出租车调度):多视图时空网络解决了这个问题,该网络本质上是CNN和LSTM网络的混合模型,cnn+lstm。数据集:滴滴数据。
- 拥塞和旅行风险预测:
- 监视事件异常监视视频:
- 交通信号控制:
- 第六章总结深度学习的优缺点
- 来源:Wang, Y., Transportation Research Part C, https://doi.org/10.1016/j.trc.2018.12.004