综述:深度学习在交通运用

Enhancing transportation systems via deep learning: A survey

1.框架
各类模型在交通的应用

文中结构

  • 第一章前言,介绍整体大情况。
  • 第二章各类深度学习的先验知识。
  • 第三章Visual recognition tasks in ITS ,交通标志牌的识别。数据集: GTSRB ,从机器学习到深度学习,准确率99以上。
  • 第四章 Traffic state prediction
    1. 交通流量预测(TFP):数据集:PeMS,cnn+lstm效果最佳。
    2. 交通速度预测(TSP):最新为 ST-GCNN
    3. Travel Time Prediction (TTP) :时空模型与lstm,未发现cnn在此方面的应用。
  • 第五章:其他任务
    1. ** Traffic tensor prediction **:rnn解决起讫点之间的交通流量,时空残差网络解决功能区域之间的人群流动,(Spatial–Temporal Neural Network解决旅行时间。交通需求预测(乘客需求优化公交车与出租车调度):多视图时空网络解决了这个问题,该网络本质上是CNN和LSTM网络的混合模型,cnn+lstm。数据集:滴滴数据。
  1. 拥塞和旅行风险预测:
  2. 监视事件异常监视视频:
  3. 交通信号控制:
  • 第六章总结深度学习的优缺点
  • 来源:Wang, Y., Transportation Research Part C, https://doi.org/10.1016/j.trc.2018.12.004
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值