OTFS channel estimation methods

本文详细探讨了在OTFS(Orthogonal Time Frequency Space)系统中,如何利用嵌入式导频进行延迟-多普勒信道估计。通过分析整数和分数多普勒抽头的影响,提出了一种基于阈值的信道估计方案,并讨论了实时软件定义无线电的实现。这种方法旨在提高信道估计的准确性,减少信道变化引起的干扰,并优化数据检测过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

•本章节指出了嵌入式导频辅助延迟多普勒信道估计

•嵌入式导频辅助延迟时间信道估计

•实时OTFS软件定义的无线电实现

1. Introduction

在本章中,我们将重点研究OTFS导频符号的输入-输出关系,以进行信道估计。假设整数延迟和多普勒抽头,延迟-多普勒输入输出关系为:

其中,gi是第i个路径的复信道增益,带有整数延迟。

从第二章回想一下,在宽带系统中,实际信道延迟位移τi可以近似为采样周期1/Mdeltaf的整数倍,即τi=li/Mdeltaf,其中li∈Z。对于大OTFS帧(大N值),实际多普勒位移νi也可以近似为多普勒分辨率1/NT的整数倍,即νi = ki/NT,其中ki∈Z。一个大的N导致一个长持续时间NT的OTFS帧,这可能会增加帧内信道参数变化的可能性,导致信道估计退化。因此,一般来说,我们考虑N<M。然而,对于N的小值,分数多普勒效应更为突出,因为它导致数据符号泄漏到超过P个延迟-多普勒网格位置。因此,在这种情况下,考虑分数多普勒在输入-输出关系中的影响是有必要的。

公式(7.1)描述了只有整数多普勒抽头的OTFS的输入-输出关系。对于分数阶多普勒频移,我们遵循第2章和第4章中的符号,其中κi∈R表示归一化的多普勒频移。然后,分数多普勒频移的输入-输出关系为、

根据近似值,每个接收到的Y[m,n]是所有路径下的信息符号的聚合。从(7.3)可以看出,通道表示精度降低。从接收符号Y[m,n],如果信道参数gi、τi和νi(以及相应的抽头li和κi)已知,我们可以使用第6章中的算法来检测数据符号X[m,n]。因此,必须使用以下的信道估计方法来获取信道状态信息。

2. Embedded pilot delay-Doppler channel estimation

让我们考虑以下系统设置。在发射机处,OTFS帧由一个导频符号、Ng保护符号和MN−Ng−1数据符号组成,如下图所示

我们在延迟多普勒网格中安排导频、保护和数据符号,以便在OTFS帧传输中进行传输

在零保护符号(Ng)的帮助下,我们以这种方式排列所有符号,以确保导频符号和数据符号之间不存在信道延迟和多普勒扩散造成的干扰。因此,我们有Ng =(2lmax + 1)*(4kmax + 1)−1保护符号,具有开销如下

通常,在LTE信道中,导频符号和保护符号的开销小于数据帧的1%。 

在接收端,我们采用接收符号Y[m,n],mp≤mp≤+ lmax,np−kmax≤nnp≤+kmax进行信道估计,而其余接收符号Y[m,n]用于数据检测,如图b所示。通过将(7.1)中的mp + li和np + ki替换m和n,接收端接收到的第i条路径的导频符号,(i = 1,...,P,)可以公式表示为:

我们的目标是估计i = 1,...,P的信道参数(gi,li,ki),其中传播路径的数量P是未知的。我们从接收到的样本Y[mp + l,np + k],0≤l≤lmax,−kmax≤k≤kmax开始,用于信道估计,其余的样本用于数据检测,如图a、b所示。估计的延迟-多普勒信道增益为:

然而,在(7.6)中存在噪声的情况下,可能被误认为信道路径。因此,我们提出了基于阈值的信道估计方案以下的路径检测。 

设b[l,k]表示根据阈值准则是否存在具有延迟l和多普勒频移k的路径,即

 其中阈值T可以动态调整以得到最佳的误检测和/或路径检测的概率。路径的数量可以被估计为 然后,(7.1)中的输入输出关系可以用估计的信道参数重写为

 在第4章中定义的每个时延抽头对应的估计多普勒响应可以写为

 然后,可以计算出所有OTFS网格点的每延抽头ˆνm,l∈CN×1的时变多普勒扩散矢量为

通过相位旋转zk(m−l),可以利用ˆνl的信息完全重建MN×MN延迟-多普勒通道矩阵H(见第4章)

第四章相关信息回顾:

### 嵌入式导频OTFS中基于阈值的信道估计 在嵌入式导频OTDS(Orthogonal Time Frequency Space)调制技术中,为了提高通信系统的可靠性并降低误码率,在接收端采用了基于阈值的方法来进行信道估计。这种方法利用了预先定义好的导频符号位置及其特性来获取信道状态信息。 #### 导频结构设计 对于OTFS系统而言,其独特的二维时延-多普勒域使得传统的OFDM导频设计方案不再适用。因此,研究者们提出了一种新的导频布局方式——即所谓的“嵌入式导频”。这些导频被精心安排在整个传输帧内,并且周围环绕着一定数量的保护零符号以防止干扰[^1]。这种特殊的布置可以有效地支持后续阶段更精确地恢复原始发送的数据流。 #### 阈值方法原理 当接收到含有噪声和其他失真的信号之后,通过设定合理的门限值(threshold),可以从混杂在一起的各种成分里区分出哪些部分是由实际存在的散射体引起的反射波形,而哪些仅仅是随机波动造成的假象。具体来说: - 对每一个可能的位置计算对应的幅度响应; - 如果某个特定位置处的能量超过了预设的阈值,则认为此处存在有效的路径贡献;反之则视为背景噪音或次要因素影响下的产物而不予考虑。 此过程能够帮助快速筛选掉大部分无意义的信息片段,从而简化进一步处理的工作量并提升整体运算效率[^2]。 ```python def threshold_based_channel_estimation(received_symbols, threshold): estimated_channels = [] for symbol in received_symbols: magnitude = abs(symbol) ** 2 if magnitude >= threshold: estimated_channels.append(symbol) return estimated_channels ``` 上述Python函数展示了如何依据给定的接收符号序列`received_symbols`和一个固定的阈值参数`threshold`实施基本形式的阈值判断逻辑。当然,在真实应用场景当中还需要考虑到更多细节问题比如动态调整阈值大小、优化搜索范围等等。 #### 结合消息传递算法进行数据检测 一旦完成了初步的信道估计操作后,就可以借助于先进的解码策略如消息传递(Message Passing, MP)算法完成最终的数据解析任务。MP算法能够在迭代过程中不断更新各个节点之间的概率分布关系直至收敛至最优解附近,进而达到更好的纠错效果[^3]。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值