阅读笔记-Effective Capacity Analysis of STAR-RIS-Assisted NOMA Networks

本文探讨了STAR-RIS在非正交多址(NOMA)网络中的应用,通过分析有效容量(EC)来评估超可靠低延迟通信性能。研究发现,STAR-RIS能提升近用户和整个网络的EC,且近用户的EC随信噪比线性增长,远用户EC趋向稳定。此外,增加STAR-RIS元素数量能有效提升网络性能。仿真结果显示,NOMA在STAR-RIS网络中的EC优于传统RIS网络,证实了NOMA和STAR-RIS结合的潜力。
摘要由CSDN通过智能技术生成

STAR-RIS:即同时折射和反射可重构智能表面(simulta-neously transmitting and reflecting reconfigurable intelligent sur-face)

EC:为满足服务质量的要求所能维持的最大恒定可实现服务速率

1 摘要

本文研究了同时折射和反射的可重构智能表面(STAR-RIS)辅助非正交多址(NOMA)网络的性能,以支持超可靠的低延迟通信。采用有效容量(EC)作为度量来探索NOMA用户的延迟需求。具体而言,得到了分布于STAR-RIS的一对NOMA用户的网络的EC解析表达式。此外,在高性噪比斜率和高信噪比功率偏置下对EC进行渐进分析,数值结果表明:

(1)在高信噪比下,近用户(Un)的电子辐射系数呈线性增加,远用户(Um)的电子辐射系数趋于常数

(2)STAR-RIS 的使用提高了NOMA网络中Un和整个网络的EC。

(3)增加STAR-RIS元素的数量是改善Un和Um EC的有效策略。

2 系统模型

 2.1 信道

本文为了刻画信道的统计特性,设定所有信道均为Nakagami-M衰落,并且假设所有用户均为单天线设备。

 2.2信号

本文的模型中仅有对一单天线用户(近用户和远用户)

近用户接收到的信号:

 

远用户接收到的信号:

P为基站S的发射功率,a_{n} , a_{m}分别为功率分配系数,并满足a_{n}<a_{m},且a_{n}+a_{m}=1,\Theta _{T}\Theta _{R}分别为star-ris的折射和反射系数矩阵,n_{n}n_{m}为加性高斯白噪声

2.3用户位置

(1)近NOMA(Un)用户位于star-ris的正面,不仅可以接收基站S的信号,也可接受star-ris的反射信号

(2)远NOMA(Um)用户只能接受star-ris的折射信号

(3)hsr、hrn、hsn和hrm分别表示S−RIS、RIS−Un、S−Un和RIS−Um的信道系数(通信链路),所有信道均满足Nakagami-M分布,即hsn∼Nakagami(msn, 1), hsr∼Nakagami(msr, 1), hrn∼Nakagami(mrn, 1)和hrm∼Nakagami(mrm, 1),其概率密度分布函数为

其中,为平均功率,为伽马函数,m为衰落参数。m=1时,上式退化为瑞利衰落;并且若一个随机变量是服从Nakagami-m分布的,那么它的模值的平方服从

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值