题目
某公司人力资源部门收到了M个合格的求职者简历,要将它们分发给N个部门.每份简历符合一个或者多个部门的要求,但是每个人的简历最多送给k个部门,每个部门最多可接收d份简历.如何实现求职者和部门之间的最大配对?
思路
这实际上是一个二分图的多对多最大配对问题.
举个例子如下图
首先还是与二分图的最大配对问题一样,在简历集合前加上起始节点S,部门结合前加上结束节点T.
使用CV1-5代表简历,t1-4代表部门.
假设单简历最多可投递部门数 k=2,单部门最多可接受简历数 d=3,那么从S/T出发,到CV/t的每一条边的容量都是2 / 3.
CV与t间的边代表这份简历在这个部门是合格的,容量自然为1.

接下来最小切割流量该怎么找呢?如果使用之前的方法,三条切割线上边的值的总和分别为10,11,12,最小切割流量为10,即k*简历的数量.

但是这张图与之前最大流问题的图不同
如果一个简历节点联通的部门节点数量p 超过了k也只有k个是有效的
没有达到k时,p为流量上限
比如图中的CV1,即使p为4也只有2个有效,CV4尽管k为2但是p为1所以该节点的上限只能是1
所以最小切割流量应为简历或者部门的最大的有效p中较小的那一个.分别是8与9,所以最小切割流量为8

最后使用最大流算法求出饱和的流量即可,如下图

文中如有错误,请多指正,不胜感激!