Qwen3发布,你要的本地部署教程来了

在这里插入图片描述

Qwen3介绍

25年4月29日,阿里推出了最新的Qwen3模型,Qwen3是 Qwen 系列大型语言模型的最新成员,之前部署的还是Qwen2.5。Qwen3旗舰模型 Qwen3-235B-A22B 在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现均更加优异。另一方面,小型 MoE 模型 Qwen3-30B-A3B 的激活参数数量是 QwQ-32B 的 10%,甚至像 Qwen3-4B 这样的小模型也能匹敌 Qwen2.5-72B-Instruct 的性能,性能成倍的提升,性能的提升以为这成本和价格的下降,对我们消费者来说都是福利。

下面是官方给出的对比图:
在这里插入图片描述

在这里插入图片描述

这次Qwen3延续了之前的开源作风,基于Apache 2.0 许可下开源了八个模型,两个 MoE 模型,六个 Dense 模型:

  • Moe模型:
    • Qwen3-235B-A22B,一个拥有 2350 多亿总参数和 220 多亿激活参数的大模型
    • Qwen3-30B-A3B,一个拥有约 300 亿总参数和 30 亿激活参数的小型 MoE 模型
  • Dense模型:
    • Qwen3-32B
    • Qwen3-14B
    • Qwen3-8B
    • Qwen3-4B
    • Qwen3-1.7B
    • Qwen3-0.6B

具体参数信息如下:

ModelsLayersHeads (Q / KV)Tie EmbeddingContext Length
Qwen3-0.6B2816 / 8Yes32K
Qwen3-1.7B2816 / 8Yes32K
Qwen3-4B3632 / 8Yes32K
Qwen3-8B3632 / 8No128K
Qwen3-14B4040 / 8No128K
Qwen3-32B6464 / 8No128K
ModelsLayersHeads (Q / KV)# Experts (Total / Activated)Context Length
Qwen3-30B-A3B4832 / 4128 / 8128K
Qwen3-235B-A22B9464 / 4128 / 8128K
Qwen3亮点
多种思考模式

Qwen3 模型支持两种思考模式:

  1. 思考模式:在这种模式下,模型会逐步推理,经过深思熟虑后给出最终答案。这种方法非常适合需要深入思考的复杂问题。
  2. 非思考模式:在此模式中,模型提供快速、近乎即时的响应,适用于那些对速度要求高于深度的简单问题。

这种灵活性使用户能够根据具体任务控制模型进行“思考”的程度。例如,复杂的问题可以通过扩展推理步骤来解决,而简单的问题则可以直接快速作答,无需延迟。至关重要的是,这两种模式的结合大大增强了模型实现稳定且高效的“思考预算”控制能力。如上文所述,Qwen3 展现出可扩展且平滑的性能提升,这与分配的计算推理预算直接相关。这样的设计让用户能够更轻松地为不同任务配置特定的预算,在成本效益和推理质量之间实现更优的平衡。
在这里插入图片描述

多语言

Qwen3 模型支持 119 种语言和方言。这一广泛的多语言能力为国际应用开辟了新的可能性,让全球用户都能受益于这些模型的强大功能

语系语种&方言
印欧语系英语、法语、葡萄牙语、德语、罗马尼亚语、瑞典语、丹麦语、保加利亚语、俄语、捷克语、希腊语、乌克兰语、西班牙语、荷兰语、斯洛伐克语、克罗地亚语、波兰语、立陶宛语、挪威语(博克马尔语)、挪威尼诺斯克语、波斯语、斯洛文尼亚语、古吉拉特语、拉脱维亚语、意大利语、奥克语、尼泊尔语、马拉地语、白俄罗斯语、塞尔维亚语、卢森堡语、威尼斯语、阿萨姆语、威尔士语、西里西亚语、阿斯图里亚语、恰蒂斯加尔语、阿瓦德语、迈蒂利语、博杰普尔语、信德语、爱尔兰语、法罗语、印地语、旁遮普语、孟加拉语、奥里雅语、塔吉克语、东意第绪语、伦巴第语、利古里亚语、西西里语、弗留利语、撒丁岛语、加利西亚语、加泰罗尼亚语、冰岛语、托斯克语、阿尔巴尼亚语、林堡语、罗马尼亚语、达里语、南非荷兰语、马其顿语僧伽罗语、乌尔都语、马加希语、波斯尼亚语、亚美尼亚语
汉藏语系中文(简体中文、繁体中文、粤语)、缅甸语
亚非语系阿拉伯语(标准语、内志语、黎凡特语、埃及语、摩洛哥语、美索不达米亚语、塔伊兹-阿德尼语、突尼斯语)、希伯来语、马耳他语
南岛语系印度尼西亚语、马来语、他加禄语、宿务语、爪哇语、巽他语、米南加保语、巴厘岛语、班加语、邦阿西楠语、伊洛科语、瓦雷语(菲律宾)
德拉威语泰米尔语、泰卢固语、卡纳达语、马拉雅拉姆语
突厥语系土耳其语、北阿塞拜疆语、北乌兹别克语、哈萨克语、巴什基尔语、鞑靼语
壮侗语系泰语、老挝语
乌拉尔语系芬兰语、爱沙尼亚语、匈牙利语
南亚语系越南语、高棉语
其他日语、韩语、格鲁吉亚语、巴斯克语、海地语、帕皮阿门托语、卡布维尔迪亚努语、托克皮辛语、斯瓦希里语
增强的 Agent 能力

不仅优化了 Qwen3 模型的 Agent 和 代码能力,同时还加强了对 MCP 的支持。

本地部署

官方推荐使用 SGLangvLLM 等框架,而对于本地使用推荐 OllamaLMStudioMLXllama.cppKTransformers 这样的工具。
本文我们以Ollama为例安装Qwen-3 8B模型,并查看效果。
之前安装了Qwen2.5 7B版本模型,电脑配置如下:
在这里插入图片描述

下面我们开始安装8B模型,执行ollama run qwen3:8b开始安装:
在这里插入图片描述

安装完成看看效果:
在这里插入图片描述

输出速度感官上看很优秀。

下面给一篇文章让生成摘要:
给出内容是一篇鸿蒙文档,输出结果如下:

在这里插入图片描述

结果也比较满足需求。

再来看看代码能力:
在这里插入图片描述

感官效果很不错,把之前本地两个模型先卸载掉:
在这里插入图片描述

参考
  • 开源地址:https://github.com/QwenLM/Qwen3
### DeepSeek-R1-Distill-Qwen-1.5B 模型本地部署教程 #### 准备工作 为了成功部署 DeepSeek-R1-Distill-Qwen-1.5B 模型,环境配置至关重要。确保安装 Python 3.x 版本以及必要的依赖库[^1]。 #### 安装依赖项 通过 pip 工具来安装所需的软件包: ```bash pip install torch transformers accelerate ``` 这些工具提供了运行深度学习模型所需的核心功能和支持加速计算的能力。 #### 下载预训练模型 利用 Hugging Face 的 `transformers` 库可以方便地获取预训练好的 Qwen 模型权重文件: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "DeepSeek-R1-Distill-Qwen-1.5B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` 这段代码会自动下载并缓存指定名称下的模型及其配套词表。 #### 加载与推理设置 完成上述准备工作之后,就可以加载已经保存下来的模型实例来进行预测操作了。下面是一个简单的例子展示如何使用该模型生成文本回复: ```python import torch def generate_response(prompt_text): inputs = tokenizer(prompt_text, return_tensors="pt").input_ids.to('cuda' if torch.cuda.is_available() else 'cpu') outputs = model.generate(inputs, max_length=50, num_return_sequences=1) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response ``` 此函数接收一段提示作为输入参数,并返回由模型产生的相应输出字符串。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

轻口味

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值