地理探测器 | tif数据-arcGIS-Excel 处理全过程

  • Arcgis处理过程

地理探测器要求类型为分类变量,所以连续的tif数据需要在arcgis中进行 重分类、渔网、采样 三个操作。

以下为主要步骤:

1.首先将所需要的自变量、因变量tif文件导入arcGIS,并做好裁剪、投影变换。

栅格裁剪:数据管理工具-栅格-栅格处理-裁剪,其中输出要素选择边界shp文件,勾选两个对号。

2.对自变量数据重分类

自然断点法,这里重分类分几类需要根据数据优化

自然断点法重分类:右侧工具栏搜索重分类就okkk

3.创建渔网

里面的行、列 需要填

打好渔网后 采样

Spatial Analyst 工具-提取分析-采样

将自变量、因变量选进 输入栅格,输出选 创建好的渔网

采样完成,全选复制到excel中,将空值删除 

  • Excel删除空值:

全选区域,将<>空替换为空白,再用定位将空值选中,右击删除整行

  • 地理探测器分析

Welcome to visit GeoDetector Website

点击上方网址下载:第四部分 excel实例

打开excel将数据粘贴,并导入自变量因变量,傻瓜操作即可

若报错:除数不能为0,说明因子中存在只有1个分类,需要做一点点改动如1改为1.000000001

### 使用 ArcGIS 进行地理探测的数据处理 #### 准备工作 为了在ArcGIS中进行有效的地理探测,需先准备好所需数据并确保这些数据适合用于此类分析。矢量数据应被适当地离散化处理,并通过唯一字段与.shp文件关联起来[^1]。 #### 数据处理 对于连续型的.tif数据而言,由于地理探测器要求输入的是分类变量而非连续数值,因此需要执行特定的操作来转换这类数据。具体来说,在ArcGIS环境中要完成如下几个步骤: - **重分类**:依据设定的标准区间对原始栅格图像重新赋值; - **创建渔网图层**:构建覆盖研究区域网格结构以便后续取样操作; - **采样**:从经过重分类后的栅格上选取代表性的样本点作为最终参与计算的对象[^2]。 ```python import arcpy from arcpy.sa import * arcpy.CheckOutExtension("Spatial") # 设置环境参数 workspace = "path_to_your_workspace" arcpy.env.workspace = workspace # 定义输入输出路径和其他必要设置... input_raster = "your_input_raster_file_path" output_reclassified_raster = "reclassed_output_name" # 创建重分类对象 remap_range = RemapRange([[0, 50, 1], [50, 100, 2]]) # 自定义范围映射规则 outReclass = Reclassify(input_raster, "Value", remap_range) # 执行重分类过程并将结果保存为新的栅格文件 outReclass.save(output_reclassified_raster) ``` 这段Python脚本展示了如何利用`arcpy`库来进行基本的空间数据分析任务之一——即基于一定标准对栅格数据实施重分类。这一步骤是准备适用于地理探测器所需的分类变量的重要环节[^4]。 #### 高效批量处理方法 当面对大量待测样本时(例如不同年份多个地区的多种属性),可以考虑采用自动化手段提高效率。一种常见的方式是在MATLAB或R语言环境下编写程序调用GD包实现批量化运行;另一种则是借助于ArcPy工具箱内的模型构建者(ModelBuilder),它允许用户设计复杂的工作流并通过图形界面直观地管理各个组件之间的逻辑关系[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值