[NWUACM]
你被困在一个三维的空间中,现在要寻找最短路径逃生!
空间由立方体单位构成
你每次向上下前后左右移动一个单位需要一分钟
你不能对角线移动并且四周封闭
是否存在逃出生天的可能性?如果存在,则需要多少时间?
Input - 输入
输入第一行是一个数表示空间的数量。
每个空间的描述的第一行为L,R和C(皆不超过30)。
L表示空间的高度。
R和C分别表示每层空间的行与列的大小。
随后L层地牢,每层R行,每行C个字符。
每个字符表示空间的一个单元。’#‘表示不可通过单元,’.‘表示空白单元。你的起始位置在’S’,出口为’E’。
每层空间后都有一个空行。L,R和C均为0时输入结束。
Output - 输出
每个空间对应一行输出。
如果可以逃生,则输出如下
Escaped in x minute(s).
x为最短脱离时间。
如果无法逃生,则输出如下
Trapped!
Sample Input - 输入样例
3 4 5
S…
.###.
.##…
###.#
##.##
##…
#.###
####E
1 3 3
S##
#E#
0 0 0
Sample Output - 输出样例
Escaped in 11 minute(s).
Trapped!
思路:这是一个要求在三维空间里使用深搜的方法,找到最短路径的出口,我觉的看代码应该一清二楚了。
在这里插入代码片
#include"cstdio"
#include"cstring"
#include"algorithm"
#include"queue"
#include"iostream"
using namespace std;
int l,r,c;
char w[50][50][50];
int vst[50][50][50];
int dirt[4][2]={0,1,1,0,0,-1,-1,0};//右上下左
struct state
{
int x,y,z,stp;
}a;
bool check(state a)
{
if(vst[a.x][a.y][a.z]==1||a.x<0||a.y<0||a.z<0||a.x>=l||a.y>=r||a.z>=c||w[a.x][a.y][a.z]=='#')
{
return 0;
}
return 1;
}
int dfs(state a)
{
queue<state>q;
state now,next;
a.stp=0;
vst[a.x][a.y][a.z]=1;
q.push(a);
while(!q.empty())
{
now=q.front();
q.pop();
if(w[now.x][now.y][now.z]=='E')
{
printf("Escaped in %d minute(s).\n",now.stp);
return 0;
}
for(int i=0;i<4;i++)
{
next.x=now.x;
next.y=now.y+dirt[i][0];
next.z=now.z+dirt[i][1];
next.stp=now.stp+1;
if(check(next))
{
vst[next.x][next.y][next.z]=1;
q.push(next);
}
}
next.x=now.x+1;
next.y=now.y;
next.z=now.z;
next.stp=now.stp+1;
if(check(next))
{
vst[next.x][next.y][next.z]=1;
q.push(next);
}
next.x=now.x-1;
next.y=now.y;
next.z=now.z;
next.stp=now.stp+1;
if(check(next))
{
vst[next.x][next.y][next.z]=1;
q.push(next);
}
}
printf("Trapped!\n");
}
int main()
{
while(~scanf("%d %d %d",&l,&r,&c))
{
if(l==0&&r==0&&c==0)
{
break;
}
memset(vst,0,sizeof(vst));
for(int i=0;i<l;i++)
{
for(int j=0;j<r;j++)
{
scanf("%s",w[i][j]);
for(int k=0;k<c;k++)
{
if(w[i][j][k]=='S')
{
a.x=i;
a.y=j;
a.z=k;
}
}
}
}
dfs(a);
}
return 0;
}