十、(167题)两数之和
给你一个下标从 1 开始的整数数组 numbers ,该数组已按 非递减顺序排列 ,请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] ,则 1 <= index1 < index2 <= numbers.length 。
以长度为 2 的整数数组 [index1, index2] 的形式返回这两个整数的下标 index1 和 index2。
你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。
你所设计的解决方案必须只使用常量级的额外空间。
示例 1:
输入:numbers = [2,7,11,15], target = 9
输出:[1,2]
解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
示例 2:
输入:numbers = [2,3,4], target = 6
输出:[1,3]
解释:2 与 4 之和等于目标数 6 。因此 index1 = 1, index2 = 3 。返回 [1, 3] 。
示例 3:
输入:numbers = [-1,0], target = -1
输出:[1,2]
解释:-1 与 0 之和等于目标数 -1 。因此 index1 = 1, index2 = 2 。返回 [1, 2] 。
提示:
2 <= numbers.length <= 3 * 104
-1000 <= numbers[i] <= 1000
numbers 按 非递减顺序 排列
-1000 <= target <= 1000
仅存在一个有效答案
代码实现:
法一(暴力枚举法):空间复杂度O(1),时间复杂度为O(n²),此法LeetCode上面跑不过去。:
int* twoSum(int* numbers, int numbersSize, int target, int* returnSize){
int i = 0, j = 0;
int* re = (int*)malloc(sizeof(long)* 2);//开辟内存空间
(*returnSize) = 2;
for (i = 0; i<numbersSize; i++){//外部循环控件
for (j = 1; j<numbersSize - i; j++){//内部循环控件
if (target == (numbers[i] + numbers[i + j])){//如果target等于numbers中的两个数的和
if (i == (i + j)){//避免重复使用该数
break;
}
else{
re[0] = i + 1;
re[1] = i + j + 1;
return re;//返回数组下标
}
}
}
}
return re;
}
法二(双指针法)空间复杂度O(1),时间复杂度为O(log(n):
int* twoSum(int* numbers, int numbersSize, int target, int* returnSize){
int left = 0, right = numbersSize - 1;//左右控件
int* re = (int*)malloc(sizeof(long)* 2);//开辟内存空间
(*returnSize) = 2;
while (left<right){//如果左下标大于右下标循环终止
if (target == (numbers[left] + numbers[right])){//如果找到两个数之和等于目标值返回数组下标
re[0] = left + 1;
re[1] = right + 1;
return re;
}
else if (target>(numbers[left] + numbers[right])){//如果目标值大于两数之和,目标值区间[left+1,right]
left++;
}
else{//如果目标值小于两数之和,目标值区间[left,right-1]
right--;
}
}
return re;
}
执行结果:
十一、有序数组的平方:
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]
提示:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 已按 非递减顺序 排序
代码实现:
int* sortedSquares(int* nums, int numsSize, int* returnSize){
int i= 0,j =0,temp = 0;
int* re = (int*) malloc(sizeof(int)*(numsSize));//开辟内存空间
(*returnSize) = numsSize;
//赋值
for(i = 0;i<=numsSize-1;i++){
re[i]=nums[i]*nums[i];
}
//排序
for(i = 0 ;i<=numsSize - 1;i++){
for(j = 1;j<=numsSize-1-i;j++){//j=1避免非法访问
if(re[j-1]>re[j]){
temp = re[j-1];
re[j-1] = re[j];
re[j]=temp;
}
}
}
return re;
}
输出结果:
十二、(278题)第一个错误版本
你是产品经理,目前正在带领一个团队开发新的产品。不幸的是,你的产品的最新版本没有通过质量检测。由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的。
假设你有 n 个版本 [1, 2, ..., n],你想找出导致之后所有版本出错的第一个错误的版本。
你可以通过调用 bool isBadVersion(version) 接口来判断版本号 version 是否在单元测试中出错。实现一个函数来查找第一个错误的版本。你应该尽量减少对调用 API 的次数。
示例 1:
输入:n = 5, bad = 4
输出:4
解释:
调用 isBadVersion(3) -> false
调用 isBadVersion(5) -> true
调用 isBadVersion(4) -> true
所以,4 是第一个错误的版本。
示例 2:
输入:n = 1, bad = 1
输出:1
代码实现:
//二分法
int firstBadVersion(int n) {
int left = 0,right = n,mid = 0;
while(left<right){
mid =left + (right-left)/2;
if(isBadVersion(mid)){
right = mid;
}else{
left = mid + 1;
}
}
return right;
}
结果如下:
以上仅题目均来源于力扣,解题思路仅代表个人想法,如有不对之处请批评指正!!
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/two-sum-ii-input-array-is-sorted
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。