Python应用|TOPSIS综合评价法与案例分析

本文介绍了TOPSIS综合评价法的计算步骤,包括数据归一化处理,并提供了一个教育评估机构对研究生院评估的案例,涉及效益型、成本型和区间型指标的处理方法。
摘要由CSDN通过智能技术生成

一、TOPSIS综合评价法

TOPSIS方法:Technique for Order Preference by Similarity to an Ideal Solution,根据有限个评价对象与理想化目标的接近程度进行排序,适用于多项目标、对多个方案进行比较选择的分析方法。

1. 计算步骤

(1)构造初始矩阵A(n个评价指标,m个目标)
在这里插入图片描述
式中,aij表示第i个目标的第j项指标值(1≤i≤m, 1≤j≤n)。

#获取数据
data=pd.read_excel('研究生院评估数据.xlsx').values  #程序和数据在一个根目录下
A=data[:,1:]  #获取初始矩阵
A=np.array(A)  #转为数组
m,n=A.shape[0],A.shape[1] # m,n为行,列数

(2)由于各个指标的量纲可能不同,需要对原始数据进行标准化处理。(归一化处理)

在这里插入图片描述

#归一化处理
A1=np.ones([m,n],float)
for i in range(n):
	mu=np.power(np.sum(np.power(A[i],2)),0.5)
	A1[i]=A[i]/mu

式中:
在这里插入图片描述

针对不同类型的要求还有其他的归一化处理方法,见二。

(3)构造加权标准化矩阵Z
在这里插入图片描述
式中,wj是第j个指标的权重。

权重确定方法:Delphi法,对数最小二乘法,层次分析法等。

W=[w1,w2,w3,w4]
W=np.array(W)
Z=np.ones([m,n],float)
for i in range(len(W)):
        for j in range(len(W)):
            if i==j:
                W[i,j]=W0[j]
            else:
                W[i,j]=0

(4)根据加权矩阵判断正负理想解Z+ ,Z-
在这里插入图片描述
式中,J*是效益性指标集(指标值越大越好);J’是成本型指标集(指标值越小越好)。

Zmax=np.ones([1,n],float)
Zmin=np.ones([1,n],float)
for j in range(n):
	Zmax[0,j]=max(Z[:,j])
	Zmin[0,j]=min(Z[:,j])

(5)计算各个方案的到正理想点的距离Si+和负理想点的距离Si-
在这里插入图片描述

for i in range(m):
	Smax=np.sqrt(np.sum(np.square(Z[i,:]-Zmax[0,:])))
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值