Python应用:TOPSIS综合评价法与案例分析
一、TOPSIS综合评价法
TOPSIS方法:Technique for Order Preference by Similarity to an Ideal Solution,根据有限个评价对象与理想化目标的接近程度进行排序,适用于多项目标、对多个方案进行比较选择的分析方法。
1. 计算步骤
(1)构造初始矩阵A(n个评价指标,m个目标)
式中,aij表示第i个目标的第j项指标值(1≤i≤m, 1≤j≤n)。
#获取数据
data=pd.read_excel('研究生院评估数据.xlsx').values #程序和数据在一个根目录下
A=data[:,1:] #获取初始矩阵
A=np.array(A) #转为数组
m,n=A.shape[0],A.shape[1] # m,n为行,列数
(2)由于各个指标的量纲可能不同,需要对原始数据进行标准化处理。(归一化处理)
#归一化处理
A1=np.ones([m,n],float)
for i in range(n):
mu=np.power(np.sum(np.power(A[i],2)),0.5)
A1[i]=A[i]/mu
式中:
针对不同类型的要求还有其他的归一化处理方法,见二。
(3)构造加权标准化矩阵Z
式中,wj是第j个指标的权重。
权重确定方法:Delphi法,对数最小二乘法,层次分析法等。
W=[w1,w2,w3,w4]
W=np.array(W)
Z=np.ones([m,n],float)
for i in range(len(W)):
for j in range(len(W)):
if i==j:
W[i,j]=W0[j]
else:
W[i,j]=0
(4)根据加权矩阵判断正负理想解Z+ ,Z-
式中,J*是效益性指标集(指标值越大越好);J’是成本型指标集(指标值越小越好)。
Zmax=np.ones([1,n],float)
Zmin=np.ones([1,n],float)
for j in range(n):
Zmax[0,j]=max(Z[:,j])
Zmin[0,j]=min(Z[:,j])
(5)计算各个方案的到正理想点的距离Si+和负理想点的距离Si-
for i in range(m):
Smax=np.sqrt(np.sum(np.square(Z[i,:]-Zmax[0,:])))