123 买卖股票的最佳时机III
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这个情况下, 没有交易完成, 所以最大利润为 0。
示例 4:
输入:prices = [1]
输出:0
提示:
1 <= prices.length <= 10^5
0 <= prices[i] <= 10^5
思路
关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。
接来下用动态规划五部曲详细分析一下:
- 确定dp数组以及下标的含义
一天一共就有五个状态,
- 没有操作 (其实也可以不设置这个状态)
- 第一次持有股票
- 第一次不持有股票
- 第二次持有股票
- 第二次不持有股票
dp[i] [j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i] [j]表示第i天状态j所剩最大现金。
需要注意:dp[i] [1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是容易陷入的误区。
例如 dp[i] [1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i] [1] 延续买入股票的这个状态。
- 确定递推公式
达到dp[i] [1]状态,有两个具体操作:
- 操作一:第i天买入股票了,那么dp[i] [1] = dp[i-1] [0] - prices[i]
- 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i] [1] = dp[i - 1] [1]
那么dp[i] [1]究竟选 dp[i-1] [0] - prices[i],还是dp[i - 1] [1]呢?
一定是选最大的,所以 dp[i][1] = max(dp[i-1] [0] - prices[i], dp[i - 1] [1]);
同理dp[i] [2]也有两个操作:
- 操作一:第i天卖出股票了,那么dp[i] [2] = dp[i - 1] [1] + prices[i]
- 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i] [2] = dp[i - 1] [2]
所以dp[i][2] = max(dp[i - 1] [1] + prices[i], dp[i - 1] [2])
同理可推出剩下状态部分:
dp[i] [3] = max(dp[i - 1] [3], dp[i - 1] [2] - prices[i]);
dp[i] [4] = max(dp[i - 1] [4], dp[i - 1] [3] + prices[i]);
- dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0] [0] = 0;
第0天做第一次买入的操作,dp[0] [1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实可以理解当天买入,当天卖出,所以dp[0] [2] = 0;
第0天第二次买入操作,初始值应该是多少呢?第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0] [3] = -prices[0];
同理第二次卖出初始化dp[0] [4] = 0;
- 确定遍历顺序
从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。
- 举例推导dp数组
以输入[1,2,3,4,5]为例
可以看到红色框为最后两次卖出的状态。
如果第一次卖出已经是最大值了,那么我们可以在当天立刻买入再立刻卖出。所以dp[4] [4]已经包含了dp[4] [2]的情况。也就是说第二次卖出手里所剩的钱一定是最多的。
代码如下:
- 时间复杂度:O(n)
- 空间复杂度:O(n × 5)
class Solution {
public:
int maxProfit(vector<int>& prices) {
if (prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (int i = 1; i < prices.size(); i++) {
dp[i][0] = dp[i - 1][0];
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return dp[prices.size() - 1][4];
}
};
其实可以不设置,‘0. 没有操作’ 这个状态,因为没有操作,手上的现金自然就是0, 正如在 121.买卖股票的最佳时机和 122.买卖股票的最佳时机II也没有设置这一状态是一样的。
class Solution {
public:
int maxProfit(vector<int>& prices) {
if (prices.size() == 0) return 0;
vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
for (int i = 1; i < prices.size(); i++) {
dp[i][1] = max(dp[i - 1][1], 0 - prices[i]);
dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return dp[prices.size() - 1][4];
}
};