测试:首先启动生产者producer,然后启动两个消费者consumer01和consumer02。然后通过producer发送4条消息:
由于consumer01消费时间只有1s,因此可以立马看到consumer01根据轮询的规则收到了1、3条消息
按照默认的轮询机制,2、4条消息由consumer02来消费,10s后consumer2能正常收到。但此时如果我们停止Consumer02线程
过一会再看consumer01,可以看到它消费了2、4条消息
7.2、持久化
前面我们通过手动应答处理了消息丢失的情况,但是如何保障当 RabbitMQ 服务停掉以后消息生产者发送过来的消息不丢失。默认情况下 RabbitMQ 退出或由于某种原因崩溃时,它会清空队列和消息,除非告知它不要这样做。确保消息不会丢失需要做两件事:我们需要将队列和消息都标记为持久化。
队列持久化
之前我们创建的队列都是非持久化的,RabbitMQ 如果重启,该队列就会被删除掉,如果要队列实现持久化就需要在声明队列的时候把 durable 参数设置为 true
需要注意的是如果之前声明的队列不是持久化的,需要把原先队列先删除,或者重新创建一个持久化的队列,不然就会错误:
消息持久化
要想让消息实现持久化需要在消息生产者修改代码,添加MessageProperties.PERSISTENT_TEXT_PLAIN 属性。
将消息标记为持久化并不能完全保证不会丢失消息。尽管它告诉 RabbitMQ 将消息保存到磁盘,但是这里依然存在当消息刚准备存储在磁盘的时候 但是还没有存储完,消息还在缓存的一个间隔点。此时并没有真正写入磁盘。持久性保证并不强,但是对于我们的简单任务队列而言,这已经绰绰有余了。如果需要更强有力的持久化策略,参考后边课件发布确认章节。
7.4、预取值
本身消息的发送就是异步发送的,所以在任何时候,channel 上肯定不止只有一个消息另外来自消费者的手动确认本质上也是异步的。因此这里就存在一个未确认的消息缓冲区,因此希望开发人员能限制此缓冲区的大小,以避免缓冲区里面无限制的未确认消息问题。
这个时候就可以通过使用 basic.qos 方法设置“预取计数”值来完成。该值定义通道上允许的未确认消息的最大数量。一旦数量达到配置的数量,RabbitMQ 将停止在通道上传递更多消息,除非至少有一个未处理的消息被确认。假设在通道上有未确认的消息 5、6、7,8,并且通道的预取计数设置为 4,此时 RabbitMQ 将不会在该通道上再传递任何消息,除非至少有一个未应答的消息被 ack。比方说 tag=6 的消息刚刚被确认 ACK,RabbitMQ 将会感知这个情况到并再发送一条消息。
消息应答和 QoS 预取值对用户吞吐量有重大影响。通常增加预取将提高向消费者传递消息的速度,虽然自动应答传输消息速率是最佳的,但是在这种情况下已传递但尚未处理的消息的数量也会增加,从而增加了消费者的RAM消耗。我们应该小心使用具有无限预处理的自动确认模式或采用手动确认模式,消费者消费了大量的消息如果没有确认的话,会导致消费者连接节点的内存消耗变大,所以找到合适的预取值是一个反复试验的过程,不同的负载该值取值也不同 100 到 300 范围内的值通常可提供最佳的吞吐量,并且不会给消费者带来太大的风险。预取值为 1 是最保守的。当然这将使吞吐量变得很低,特别是消费者连接延迟很严重的情况下,特别是在消费者连接等待时间较长的环境中。对于大多数应用来说,稍微高一点的值将是最佳的。
手动应答:第一个参数表示消息标记tag、第二个参数false表示不进行批量应答
channel.basicAck(message.getEnvelope().getDeliveryTag(), false);
DeliverCallback deliverCallback = (consumerTag, message) -> {
// 模拟接受消息的延迟 1s
try {
Thread.sleep(1000 * 10);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("消息成功消费!内容为:" + new String(message.getBody()));
// 手动应答:第一个参数表示消息标记tag、第二个参数false表示不进行批量应答
channel.basicAck(message.getEnvelope().getDeliveryTag(), false);
};
CancelCallback cancelCallback = (consumerTag) -> {
System.out.println("消息消费被中断");
};
channel.basicConsume(QUEUE_NAME, false, deliverCallback, cancelCallback);
}
由于consumer01处理速度较快,consumer02处理较慢,所以consumer01处理完5条消息时consumer02还未处理第一条消息,因此后面的8、9、10条消息都会分配给consumer01进行消费。
对比以下结果,与我们设想的相同:
7.5、发布确认
生产者将信道设置成 confirm 模式,一旦信道进入 confirm 模式,所有在该信道上面发布的消息都将会被指派一个唯一的 ID(从 1 开始),一旦消息被投递到所有匹配的队列之后,broker 就会发送一个确认给生产者(包含消息的唯一ID),这就使得生产者知道消息已经正确到达目的队列了,如果消息和队列是可持久化的,那么确认消息会在将消息写入磁盘之后发出,broker 回传给生产者的确认消息中 delivery-tag 域包含了确认消息的序列号,此外 broker 也可以设置basic.ack 的multiple 域,表示到这个序列号之前的所有消息都已经得到了处理。
confirm 模式最**大的好处在于他是异步的,**一旦发布一条消息,生产者应用程序就可以在等信道返回确认的同时继续发送下一条消息,当消息最终得到确认之后,生产者应用便可以通过回调方法来处理该确认消息,如果 RabbitMQ 因为自身内部错误导致消息丢失,就会发送一条 nack 消息,生产者应用程序同样可以在回调方法中处理该 nack 消息。
发布确认默认是没有开启的,如果要开启需要调用方法 confirmSelect,每当你要想使用发布确认,都需要在 channel 上调用该方法。
// 开启发布确认
channel.confirmSelect();
发布确认机制有三种策略:单个确认发布、批量确认发布、异步确认发布。其中前两者是同步确认的方式,也就是发布一个/一批消息之后只有被确认发布,后续的消息才能继续发布,后者是异步确认的方式,我们只管发布消息即可,消息是否被确认可以通过回调函数来接收到。
异步确认发布
异步确认虽然编程逻辑比上两个要复杂,但是性价比最高,无论是可靠性还是效率都没得说,他是利用回调函数来达到消息可靠性传递的,这个中间件也是通过函数回调来保证是否投递成功,下面就让我们来详细讲解异步确认是怎么实现的。
我们把未确认的消息放到一个基于内存的能被发布线程访问的队列,比如说用 ConcurrentLinkedQueue 这个队列在 confirm callbacks 与发布线程之间进行消息的传递。
```java
public class AsyncProducer {
public static String QUEUE_NAME = "confirm";
public static int MESSAGE_COUNT = 10;
public static void main(String[] args) throws Exception {
// 创建channel
Channel channel = utils.RabbitMqUtils.getChannel();
// 开启发布确认
channel.confirmSelect();
// 开始时间
long begin = System.currentTimeMillis();
// 准备一个线程安全有序的哈希表,用于存放消息的序号以及内容
ConcurrentSkipListMap<Long, String> concurrentSkipListMap = new ConcurrentSkipListMap<>();
// 消息确认成功回调函数(第一个参数表示消息标志,第二个参数表示是否为批量确认)
ConfirmCallback ackCallback = (long deliveryTag, boolean multiple) -> {
// 删除掉已经确认的消息,剩下就是未确认的消息
if (multiple) { // 如果是批量 则批量删除
ConcurrentNavigableMap<Long, String> confirmed = concurrentSkipListMap.headMap(deliveryTag);
confirmed.clear();
} else concurrentSkipListMap.remove(deliveryTag); // 如果不是批量发送 则删除当前消息
System.out.println("消息:" + deliveryTag + "已确认发布");
};
// 消息确认失败回调函数(第一个参数表示消息标志,第二个参数表示是否为批量确认)
ConfirmCallback nackCallback = (long deliveryTag, boolean multiple) -> {
String message = concurrentSkipListMap.get(deliveryTag);
System.out.println("未确认的消息为:" + message);
};
// 首先准备异步消息监听器,监听哪些消息成功了,哪些消息失败了
channel.addConfirmListener(ackCallback, nackCallback); // 异步通知
// 发送消息
for (int i = 0; i < MESSAGE_COUNT; i++) {
String message = "消息" + i;
channel.basicPublish("", QUEUE_NAME, null, message.getBytes());
// 在此记录下所有要发送的消息
concurrentSkipListMap.put(channel.getNextPublishSeqNo(), message);
}
// 结束时间
long end = System.currentTimeMillis();
System.out.println("发布" + MESSAGE_COUNT + "条异步确认消息耗时:" + (end - begin) + "ms");
}
``
}
7.6、死信队列
死信队列的概念:
死信就是无法被消费的消息。一般来说,producer 将消息投递到 broker 或者直接到 queue 中,consumer 从 queue 取出消息进行消费,但某些时候由于特定的原因导致 queue 中的某些消息无法被消费,这样的消息如果没有后续的处理,就变成了死信,有死信自然就有了死信队列。
应用场景:
应用场景:
为了保证订单业务的消息数据不丢失,需要使用到 RabbitMQ 的死信队列机制,当消息消费发生异常时,将消息投入死信队列中。
还有比如说: 用户在商城下单成功并点击去支付后在指定时间未支付时自动失效
死信的原因:
消息 TTL 过期
队列达到最大长度(队列满了无法再添加数据到 mq 中)
消息被拒绝(basic.reject 或 basic.nack)并且 requeue=false
我们接下来会通过代码模仿三种导致死信的效果:消息被拒绝、消息TTL过期、队列达到最大长
消息TTL 过期
生产者Producer:
package mode2_WorkQueues.dead;
import com.rabbitmq.client.AMQP;
import com.rabbitmq.client.BuiltinExchangeType;
import com.rabbitmq.client.Channel;
public class Producer {
private static final String NORMAL_EXCHANGE = "normal_exchange"; // 普通交换机名称
public static void main(String[] args) throws Exception {
// 创建channel
Channel channel = utils.RabbitMqUtils.getChannel();
// 声明普通交换机
channel.exchangeDeclare(NORMAL_EXCHANGE, BuiltinExchangeType.DIRECT);
// 设置消息到TTL时间为10s=10000ms
AMQP.BasicProperties properties = new AMQP.BasicProperties().builder().expiration("10000").build();
// 发送10条消息
for (int i = 0; i < 10; i++) {
String message = i + "";
channel.basicPublish(NORMAL_EXCHANGE, "zhangsan", properties, message.getBytes());
System.out.println("生产者发送消息:" + message);
}
}
}
消费者Consumer01:
package mode2_WorkQueues.dead;
import com.rabbitmq.client.BuiltinExchangeType;
import com.rabbitmq.client.CancelCallback;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.DeliverCallback;
import utils.RabbitMqUtils;
import java.util.HashMap;
import java.util.Map;
public class Consumer01 {
private static final String NORMAL_EXCHANGE = “normal_exchange”; // 普通交换机名称
private static final String DEAD_EXCHANGE = “dead_exchange”; // 死信交换机名称
private static final String NORMAL_QUEUE = “normal_queue”; // 普通队列名称
private static final String DEAD_QUEUE = “dead_queue”; // 死信队列名称
public static void main(String[] args) throws Exception {
// 创建channel
Channel channel = RabbitMqUtils.getChannel();
// 声明普通和死信交换机(类型都为DIRECT)
channel.exchangeDeclare(NORMAL_EXCHANGE, BuiltinExchangeType.DIRECT);
channel.exchangeDeclare(DEAD_EXCHANGE, BuiltinExchangeType.DIRECT);
// 声明普通和死信队列(普通队列需要传递参数设置死信交换机及其对应的路由key)
Map<String, Object> arguments = new HashMap<>();
arguments.put("x-dead-letter-exchange", DEAD_EXCHANGE); // 设置死信交互机
arguments.put("x-dead-letter-routing-key", "lisi"); // 设置与死信交换机间的routing-key
channel.queueDeclare(NORMAL_QUEUE, false, false, false, arguments);
channel.queueDeclare(DEAD_QUEUE, false, false, false, null);
// 绑定队列与交换机,设置其间的路由key
channel.queueBind(NORMAL_QUEUE, NORMAL_EXCHANGE, "zhangsan");
channel.queueBind(DEAD_QUEUE, DEAD_EXCHANGE, "lisi");
// 消费消息
System.out.println("Consumer01等待接收普通队列到消息......");
DeliverCallback deliverCallback = (consumerTag, message) -> {
System.out.println("Consumer01接收到普通队列的消息:" + new String(message.getBody()));
};
CancelCallback cancelCallback = (consumerTag) -> {
System.out.println("消息消费被中断");
};
channel.basicConsume(NORMAL_QUEUE, deliverCallback, cancelCallback);
}
}
package mode2_WorkQueues.dead;
import com.rabbitmq.client.BuiltinExchangeType;
import com.rabbitmq.client.CancelCallback;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.DeliverCallback;
import utils.RabbitMqUtils;
public class Consumer02 {
private static final String DEAD_EXCHANGE = "dead_exchange"; // 死信交换机名称
private static final String DEAD_QUEUE = "dead_queue"; // 死信队列名称
public static void main(String[] args) throws Exception {
// 创建channel
Channel channel = RabbitMqUtils.getChannel();
// 声明死信交换机(类型都为DIRECT)
channel.exchangeDeclare(DEAD_EXCHANGE, BuiltinExchangeType.DIRECT);
// 声明死信队列
channel.queueDeclare(DEAD_QUEUE, false, false, false, null);
// 绑定队列与交换机,设置其间的路由key
channel.queueBind(DEAD_QUEUE, DEAD_EXCHANGE, "lisi");
// 消费消息
System.out.println("Consumer02等待接受死信队列的消息......");
DeliverCallback deliverCallback = (consumerTag, message) -> {
System.out.println("Consumer02接收到死信队列的消息:" + new String(message.getBody()));
};
CancelCallback cancelCallback = (consumerTag) -> {
System.out.println("消息消费被中断");
};
channel.basicConsume(DEAD_QUEUE, deliverCallback, cancelCallback);
}
}
我们接下来进行测试,首先启动 Consumer01 创建交换机和队列,然后关闭它,模拟其接受不到消息。然后启动生产者发送10条消息,可以看到发送到10条消息首先在 normal-queue 队列中,10s后消息过期,消息进去到 dead-queue 死信队列中。
最后我们启动 Consumer02,从死信队列中消费消息:
**Map<String, Object> arguments = new HashMap<>();
arguments.put("x-dead-letter-exchange", DEAD_EXCHANGE); // 设置死信交互机
arguments.put("x-dead-letter-routing-key", "lisi"); // 设置与死信交换机间的routing-key
arguments.put("x-max-length", 6); // 设置正常队列长度为6
channel.queueDeclare(NORMAL_QUEUE, false, false, false, arguments);**
7.7、延迟队列
概念
延时队列,队列内部是有序的,最重要的特性就体现在它的延时属性上,延时队列中的元素是希望在指定时间到了以后或之前取出和处理,简单来说,延时队列就是用来存放需要在指定时间被处理的元素的队列。
使用场景
订单在十分钟之内未支付则自动取消。
新创建的店铺,如果在十天内都没有上传过商品,则自动发送消息提醒。
用户注册成功后,如果三天内没有登陆则进行短信提醒。
用户发起退款,如果三天内没有得到处理则通知相关运营人员。
预定会议后,需要在预定的时间点前十分钟通知各个与会人员参加会议。
这些场景都有一个特点,需要在某个事件发生之后或者之前的指定时间点完成某一项任务,如:发生订单生成事件,在十分钟之后检查该订单支付状态,然后将未支付的订单进行关闭;看起来似乎使用定时任务,一直轮询数据,每秒查一次,取出需要被处理的数据,然后处理不就完事了吗?如果数据量比较少,确实可以这样做,比如:对于“如果账单一周内未支付则进行自动结算”这样的需求,如果对于时间不是严格限制,而是宽松意义上的一周,那么每天晚上跑个定时任务检查一下所有未支付的账单,确实也是一个可行的方案。但对于数据量比较大,并且时效性较强的场景,如:“订单十分钟内未支付则关闭“,短期内未支付的订单数据可能会有很多,活动期间甚至会达到百万甚至千万级别,对这么庞大的数据量仍旧使用轮询的方式显然是不可取的,很可能在一秒内无法完成所有订单的检查,同时会给数据库带来很大压力,无法满足业务要求而且性能低下。
RabbitMQ 中的 TTL
TTL 是什么呢?TTL 是 RabbitMQ 中一个消息或者队列的属性,表明一条消息或者该队列中的所有消息的最大存活时间,单位是毫秒。换句话说,如果一条消息设置了 TTL 属性或者进入了设置TTL 属性的队列,那么这条消息如果在TTL 设置的时间内没有被消费,则会成为"死信"。如果同时配置了队列的TTL 和消息的TTL,那么较小的那个值将会被使用,有两种方式设置 TTL:
1️⃣ 消息设置TTL
便是针对每条消息设置TTL
2️⃣ 队列设置TTL
创建队列的时候设置队列的“x-message-ttl”属性
如果设置了队列的 TTL 属性,那么一旦消息过期,就会被队列丢弃(如果配置了死信队列被丢到死信队列中)。而如果仅设置消息的 TTL 属性,即使消息过期,也不一定会被马上丢弃,因为消息是否过期是在即将投递到消费者之前判定的,如果当前队列有严重的消息积压情况,则已过期的消息也许还能存活较长时间;
还需要注意的一点是,如果不设置 TTL,表示消息永远不会过期,如果将 TTL 设置为 0,则表示除非此时可以直接投递该消息到消费者,否则该消息将会被丢弃。
前一小节我们介绍了死信队列,刚刚又介绍了 TTL,至此利用 RabbitMQ 实现延时队列的两大要素已经集齐,接下来只需要将它们进行融合,再加入一点点调味料,延时队列就可以新鲜出炉了。想想看,延时队列,不就是想要消息延迟多久被处理吗,TTL 则刚好能让消息在延迟多久之后成为死信,另一方面,成为死信的消息都会被投递到死信队列里,这样只需要消费者一直消费死信队列里的消息就完事了,因为里面的消息都是希望被立即处理的消息。
SpringBoot整合RabbitMQ实现延迟队列
环境搭建
这里在根目录下新建一个springboot的module
spring.rabbitmq.host=82.156.9.173
spring.rabbitmq.port=5672
spring.rabbitmq.username=zb
spring.rabbitmq.password=123456
通过设置队列TTL+死信实现消息延迟
1️⃣ 编写初始化类
代码架构图如下所示,其中有两个direct类型的交换机X、Y,其中Y为死信交换机;还有三个队列QA、QB、QD,QA和QB为普通队列,其中QA中消息的ttl为10s,QB中消息的ttl为40s,QD为死信队列。队列与交换机之间的routing-key如图中连线上标注所示:
我们接下来编写一个类用于初始化其中所有的交换机和队列,在springboot主启动类同级目录下新建init包,然后在其中新建QueueTTLDelay.java类
Configuration
public class QueueTTLDelay {
public static final String X_EXCHANGE = "X";
public static final String QUEUE_A = "QA";
public static final String QUEUE_B = "QB";
public static final String Y_DEAD_LETTER_EXCHANGE = "Y";
public static final String DEAD_LETTER_QUEUE = "QD";
// 声明交换机X
@Bean("xExchange")
public DirectExchange xExchange() {
return new DirectExchange(X_EXCHANGE);
}
// 声明死信交换机Y
@Bean("yExchange")
public DirectExchange yExchange() {
return new DirectExchange(Y_DEAD_LETTER_EXCHANGE);
}
// 声明队列QA,设置队列的ttl为10s并绑定死信交换机
@Bean("queueA")
public Queue queueA() {
Map<String, Object> arguments = new HashMap<>();
// 声明当前队列绑定的死信交换机
arguments.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE);
// 声明当前队列的死信routing-key
arguments.put("x-dead-letter-routing-key", "YD");
// 声明队列的 TTL
arguments.put("x-message-ttl", 10000);
return QueueBuilder.durable(QUEUE_A).withArguments(arguments).build();
}
// 声明队列QB,设置队列的ttl为40s并绑定死信交换机
@Bean("queueB")
public Queue queueB() {
Map<String, Object> arguments = new HashMap<>();
// 声明当前队列绑定的死信交换机
arguments.put("x-dead-letter-exchange", Y_DEAD_LETTER_EXCHANGE);
// 声明当前队列的死信routing-key
arguments.put("x-dead-letter-routing-key", "YD");
// 声明队列的 TTL
arguments.put("x-message-ttl", 40000);
return QueueBuilder.durable(QUEUE_B).withArguments(arguments).build();
}
// 声明死信队列QD
@Bean("queueD")
public Queue queueD() {
return new Queue(DEAD_LETTER_QUEUE);
}
// 死信队列QD绑定死信交换机Y
@Bean
public Binding deadLetterBindingQAD(@Qualifier("queueD") Queue queueD, @Qualifier("yExchange") DirectExchange yExchange) {
return BindingBuilder.bind(queueD).to(yExchange).with("YD");
}
// 队列A绑定X交换机
@Bean
public Binding queueABindExchangeX(@Qualifier("queueA") Queue queueA, @Qualifier("xExchange") DirectExchange xExchange) {
return BindingBuilder.bind(queueA).to(xExchange).with("XA");
}
// 队列B绑定X交换机
@Bean
public Binding queueBBindExchangeX(@Qualifier("queueB") Queue queueB, @Qualifier("xExchange") DirectExchange xExchange) {
return BindingBuilder.bind(queueB).to(xExchange).with("XB");
}
}
2️⃣ 编写消息生产者
在springboot主启动类同级目录下新建producer包,然后在其中新建SendMessageController.java类用于发送消息
ackage com.zsr.springbootrabbitmq.Producer;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;
import java.util.Date;
@RestController
@Slf4j
public class SendMessageController {
@Autowired
private RabbitTemplate rabbitTemplate;
@GetMapping("sendMsg/{message}")
public void sendMsg(@PathVariable String message) {
log.info("当前时间:{},发送一条信息给两个TTL队列:{}", new Date(), message);
rabbitTemplate.convertAndSend("X", "XA", "消息来自ttl=10s的队列" + message);
rabbitTemplate.convertAndSend("X", "XB", "消息来自ttl=40s的队列" + message);
}
}
3️⃣ 编写消息消费者
在springboot主启动类同级目录下新建Consumer包,然后在其中新建MessageConsumer.java类用于接收消息
package com.zsr.springbootrabbitmq.consumer;
import com.rabbitmq.client.Channel;
import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.core.Message;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;
import java.io.IOException;
import java.util.Date;
@Slf4j
@Component
public class MessageConsumer {
@RabbitListener(queues = "QD")
public void receiveD(Message message, Channel channel) throws IOException {
String msg = new String(message.getBody());
log.info("当前时间:{},收到死信队列信息{}", new Date().toString(), msg);
}
}
4️⃣ 运行测试
启动springboot主启动类,然后访问 http://localhost:8080/sendMsg/hello 发送hello消息,观察控制台日志信息,可以看到10s和40s后消费者从死信队列中消费到了hello消息,也就达到了延时队列的效果。
通过设置消息TTL+死信实现消息延迟
以上延时队列的实现目前只有 10S 和 40S 两个时间选项,如果需要一个小时后处理,那么就需要增加TTL为一个小时的队列,如果是预定会议室然后提前通知这样的场景,岂不是要增加无数个队列才能满足需求?
因此我们需要做出一些优化,在这里新增了一个队列 QC,绑定关系如下,该队列不设置 TTL 时间,我们通过指定消息的 TTL 来实现消息的延迟
然后在SendMessageController.java中新增一个方法用于发送指定延时时间的消息
@GetMapping("sendExpirationMsg/{message}/{ttlTime}")
public void sendMsg(@PathVariable String message, @PathVariable String ttlTime) {
rabbitTemplate.convertAndSend("X", "XC", message, correlationData -> {
correlationData.getMessageProperties().setExpiration(ttlTime);
return correlationData;
});
log.info("当前时间:{},发送一条时长{}毫秒TTL信息给队列C:{}", new Date(), ttlTime, message);
}
```看起来似乎没什么问题,但是在最开始的时候,就介绍过如果使用在消息属性上设置 TTL 的方式,消息可能并不会按时“死亡“,因为 RabbitMQ 只会检查第一个消息是否过期,如果过期则丢到死信队列,如果第一个消息的延时时长很长,而第二个消息的延时时长很短,第二个消息并不会优先得到执行。
我们来进行演示,如果我们请求以下两个url:
http://localhost:9090/sendExpirationMsg/你好3/10000(延迟10s)
http://localhost:9090/sendExpirationMsg/你好4/2000(延迟2s)
再查看结果,可以发现出现了问题,你好4明明只需要2s,但却等了20s,**因为延迟队列是排队的,先来后到,只有先前的处理完,才会处理下一条消息**