R语言课程设计之-深圳房价预测模型
目录
一、 摘要: 3
二、 R语言简介 3
三、 商品房价和时间的非线性模型 3
(一) 数据准备(导入数据): 3
(二) 建立非线性模型 4
四、 影响房价的多因素的多元线性回归模型 6
(一) 模型的建立 6
(二) 模型的求解 7
(三) 模型总结 13
五、 房价预测及模型的对比评价 13
(一) 指数方程预测房价 13
(二) 多元线性回归预测房价 13
六、 总结 14
(一) 建议 14
(二) 心得 14
(三) 参考文献 14
摘要:
利用 R 语言优秀的统计计算和统计制图特点,对多元统计模型进行 分析。本文建立的模型主要是讨论深圳商品房的房价问题。
本文的数据来源于《深圳统计年鉴2019》和国家统计局,其中本文选取了比较接近现如今的2010-2018年的数据。考虑到商品房不同于一般商品,它不仅提供居住功能,同时还能带来收租收益,或产生增值活动。因此,在对当前深圳房价进行预测时,本文主要从深圳生产总值,在岗职工平均工资,年末人口,社会商品零售总额,商品房销售面积,房地产开发商业用房投资额六个方面来考虑对于商品房房价的影响。
R语言简介
R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
R是一套完整的数据处理、计算和制图软件系统。其功能包括:数据存储和处理系统;数组运算工具(其向量、矩阵运算方面功能尤其强大);完整连贯的统计分析工具;优秀的统计制图功能;简便而强大的编程语言:可操纵数据的输入和输出,可实现分支、循环,用户可自定义功能。
与其说R是一种统计软件,还不如说R是一种数学计算的环境,因为R并不是仅仅提供若干统计程序、使用者只需指定数据库和若干参数便可进行一个统计分析。R的思想是:它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。
商品房价和时间的非线性模型
数据准备(导入数据):
为了方便展示,我们分别为本文选取的六个因素设置为:
t:时间, y商品房平均销售价格, x1深圳生产总值, x2在岗职工平均工资, x3年末人口, x4社会商品零售总额, x5商品房销售面积, x6房地产开发商业用房投资额。
代码如下:
sz<-read.csv(“file:///C:/Users/admin/Desktop/price forecast.csv”,header = T,row.names=1)
show(sz)
数据如图:
建立非线性模型
首先画出y关于t的条形图,代码如下:
newdata <-sz[,c(1,2)]
barplot(newdata y