R语言课程设计之-深圳房价预测模型

本文通过R语言对深圳房价进行预测,建立了商品房价与时间的非线性模型和影响房价的多因素多元线性回归模型。经过数据预处理和模型检验,发现房价与商品房销售面积、房地产开发商业用房投资额相关性显著。预测结果显示,房价将随时间呈指数增长趋势,政策需调控以抑制房价上涨。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言课程设计之-深圳房价预测模型

目录
一、 摘要: 3
二、 R语言简介 3
三、 商品房价和时间的非线性模型 3
(一) 数据准备(导入数据): 3
(二) 建立非线性模型 4
四、 影响房价的多因素的多元线性回归模型 6
(一) 模型的建立 6
(二) 模型的求解 7
(三) 模型总结 13
五、 房价预测及模型的对比评价 13
(一) 指数方程预测房价 13
(二) 多元线性回归预测房价 13
六、 总结 14
(一) 建议 14
(二) 心得 14
(三) 参考文献 14
摘要:
利用 R 语言优秀的统计计算和统计制图特点,对多元统计模型进行 分析。本文建立的模型主要是讨论深圳商品房的房价问题。
本文的数据来源于《深圳统计年鉴2019》和国家统计局,其中本文选取了比较接近现如今的2010-2018年的数据。考虑到商品房不同于一般商品,它不仅提供居住功能,同时还能带来收租收益,或产生增值活动。因此,在对当前深圳房价进行预测时,本文主要从深圳生产总值,在岗职工平均工资,年末人口,社会商品零售总额,商品房销售面积,房地产开发商业用房投资额六个方面来考虑对于商品房房价的影响。
R语言简介
R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
R是一套完整的数据处理、计算和制图软件系统。其功能包括:数据存储和处理系统;数组运算工具(其向量、矩阵运算方面功能尤其强大);完整连贯的统计分析工具;优秀的统计制图功能;简便而强大的编程语言:可操纵数据的输入和输出,可实现分支、循环,用户可自定义功能。
与其说R是一种统计软件,还不如说R是一种数学计算的环境,因为R并不是仅仅提供若干统计程序、使用者只需指定数据库和若干参数便可进行一个统计分析。R的思想是:它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。
商品房价和时间的非线性模型
数据准备(导入数据):
为了方便展示,我们分别为本文选取的六个因素设置为:
t:时间, y商品房平均销售价格, x1深圳生产总值, x2在岗职工平均工资, x3年末人口, x4社会商品零售总额, x5商品房销售面积, x6房地产开发商业用房投资额。
代码如下:

sz<-read.csv(“file:///C:/Users/admin/Desktop/price forecast.csv”,header = T,row.names=1)
show(sz)

数据如图:
在这里插入图片描述
建立非线性模型
首先画出y关于t的条形图,代码如下:
newdata <-sz[,c(1,2)]
barplot(newdata y

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值