[自用] 菜菜的sklearn 特征工程

本文介绍了特征选择的三种主要方法:过滤法、嵌入法和包装法。过滤法包括方差过滤和相关性过滤,如卡方检验、F检验和互信息法,用于初步筛选特征。嵌入法如随机森林和Lasso回归在模型训练中选择重要特征。包装法则通过递归特征消除等策略结合算法选择最佳特征子集。文章强调了不同方法在计算效率和模型效果之间的权衡,并给出了实际案例分析。
摘要由CSDN通过智能技术生成

目录

3 特征选择 feature_selection

3.1 Filter过滤法

3.1.1 方差过滤

3.1.2 相关性过滤

3.1.3 过滤法总结

3.2 Embedded 嵌入法(过滤法进化版)

3.3 包装法Wrapper(结合了过滤法和嵌入法)

3.4 特征选择总结


3 特征选择 feature_selection

数据预处理完成后,我们可以开始特征工程了

特征提取(feature extraction)

        从文字,图像,声音等其他非结构化数据中提取新信息作为特征。比如说,从淘宝宝贝的名称中提取出产品类别,产品颜色,是否是网红产品等等。

特征创造(feature creation)

        把现有特征进行组合,或互相计算,得到新的特征。比如说,我们有一列特征是速度,一列特征是距离,我们就可以通过让两列相除,创造新的特征: 通过距离所花的时间。

特征选择(feature selection)

        从所有的特征中,选择出有意义,对模型有帮助的特征,以避免必须将所有特征都导入模型去训练的情况。

特征工程的第一步:理解业务

通过理解业务来进行特征选择

但遇到极端情况,我们无法依赖对业务的理解来选择特征,该怎么办呢?

我们有四种方法可以用来选择特征: 过滤法,嵌入法,包装法,和降维算法。

这期主要介绍过滤法。

数据集:Digit Recognizer | Kaggle

导入数据

# 导入特别庞大的数据集,进行特征工程的展示
# https://www.kaggle.com/competitions/digit-recognizer/data?select=train.csv
import pandas as pd
data = pd.read_csv("C:\\Users\\Leng3\\jupyter_notebook_code\\datasets\\digit recognizer\\train.csv")

data.head()

# 提取标签和特征
X = data.iloc[:,1:]
y = data.iloc[:,0]
X.shape

3.1 Filter过滤法

过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法。

它是根据各种统计检验中的分数,相关性的各项指标来选择特征的。

全部特征 -> 最佳特征子集 -> 算法 -> 模型评估

3.1.1 方差过滤

3.1.1.1 VarianceThreshold

这是通过特征本身的方差来筛选特征的类。

比如一个特征本身的方差很小,就表示样本在这个特征上基本没有差异,可能特征中的大多数值都一样,甚至整个特征的取值都相同,那这个特征对于样本区分没有什么作用。

所以无论接下来的特征工程要做什么,都要优先消除方差为0的特征。

VarianceThreshold有重要参数threshold,表示方差的阈值,表示舍弃所有方差小于threshold的特征,不填默认为0,即删除所有的记录都相同的特征。

from sklearn.feature_selection import VarianceThreshold
selector = VarianceThreshold() # 实例化,不填参数默认方差为0
X_var0 = selector.fit_transform(X) # 获取删除不合格特征之后的新特征矩阵
# 更凝练的写法
# X = VarianceThreshold().fit_transform(X)
X_var0.shape

pd.DataFrame(X_var0).head()

 我们已经删除了方差为0的特征,但是依然剩下了708多个特征

如果我们知道我们需要多少个特征,方差也可以帮助我们将特征选择一步到位

可以设定一个让特征总数减半的方差阈值,只要找到特征方差的中位数,再将这个中位数作为参数threshold的值输入

import numpy as np
X_fsvar = VarianceThreshold(np.median(X.var().values)).fit_transform(X)
X_fsvar.shape

pd.DataFrame(X_fsvar).head()

当特征是二分类时,特征的取值就是伯努利随机变量,这些变量的方差可以计算为:

Var[X] = p(1-p)

其中X是特征矩阵,p是二分类特征中的一类在这个特征中所占的概率

# 若特征是伯努利随机变量,假设p=0.8,即二分类特征中某种分类占到80%以上的时候删除特征
X_bvar = VarianceThreshold(.8*(1-.8)).fit_transform(X)
X_bvar.shape

pd.DataFrame(X_bvar).head()

3.1.1.2 方差过滤对模型的影响

我们这样做了以后,对模型效果会有怎样的影响呢?

这里展示KNN和随机森林分别在方差过滤前和方差过滤后运行的效果和运行时间的对比。

KNN是K近邻算法中的分类算法,其原理非常简单,是利用每个样本到其他样本点的距离来判断每个样本点的相似度,然后对样本进行分类。

KNN必须遍历每个特征和每个样本,因而特征越多,KNN的计算也就会越缓慢。

1. 导入模块并准备数据

# KNN vs 随机森林在不同方差过滤效果下的对比
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.neighbors import KNeighborsClassifier as KNN
from sklearn.model_selection import cross_val_score
import numpy as np

X = data.iloc[:,1:]
y = data.iloc[:,0]

X_fsvar = VarianceThreshold(np.median(X.var().values)).fit_transform(X)

2. KNN方差过滤前(运行时间很长!可以直接看结果)

%%timeit
# python中的魔法命令,可以直接使用%%timeit来计算运行这个ce11中的代码所需的时间
cross_val_score(KNN(),X,y,cv=5).mean()

结果为0.9658569700264943

3. KNN方差过滤后(运行时间很长!可以直接看结果)

%%timeit
cross_val_score(KNN(),X_fsvar,y,cv=5).mean()
<
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值