sklearn之--特征工程

本文详细介绍了在数据科学中特征工程的重要性,并通过sklearn库展示了数据预处理的各个环节,包括无量纲化(标准化、区间缩放)、定性特征哑编码、定量特征二值化、缺失值处理和数据变换。同时,还涵盖了特征选择的Filter、Wrapper和Embedded方法,如方差选择、相关性分析、卡方检验、互信息法、递归特征消除、基于惩罚项和树模型的特征选择。此外,文章还讨论了降维技术,如主成分分析(PCA)和线性判别分析(LDA)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.什么是特征工程?

在数据科学界流传着一种说法,“数据决定了模型的上限,算法决定了模型的下限”,因此在这个“说法”中,明确的表明了,只有好的数据才能够有好的模型,数据才是决定了模型的关键因素。而特征工程做的事情,简单来说,就是找到好的数据,拿给模型“”。下面采用一个思维导图来简单展现结构:
在这里插入图片描述
在sklearn中包含了上面所列的大多数的方式,包括数据预处理,特征选择,降维等。首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也十分强大!
本文中使用sklearn中的IRIS(鸢尾花)数据集来对特征处理功能进行说明。IRIS数据集由Fisher在1936年整理,包含4个特征(Sepal.Length(花萼长度)、Sepal.Width(花萼宽度)、Petal.Length(花瓣长度)、Petal.Width(花瓣宽度)),特征值都为正浮点数,单位为厘米。目标值为鸢尾花的分类(Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾),Iris Virginica(维吉尼亚鸢尾))。导入IRIS数据集的代码如下:

from sklearn.datasets import load_iris

#导入IRIS数据集
iris = load_iris()

#特征矩阵
iris.data

#目标向量
iris.target

2.数据预处理

通过特征提取,我们能得到未经处理的特征,这时的特征可能有以下问题:

  • 不属于同一量纲:即特征的规格不一样,不能够放在一起比较。无量纲化可以解决这一问题。
  • 信息冗余:对于某些定量特征,其包含的有效信息为区间划分,例如学习成绩,假若只关心“及格”或不“及格”,那么需要将定量的考分,转换成“1”和“0”表示及格和未及格。二值化可以解决这一问题。
  • 定性特征不能直接使用:某些机器学习算法和模型只能接受定量特征的输入,那么需要将定性特征转换为定量特征。最简单的方式是为每一种定性值指定一个定量值,但是这种方式过于灵活,增加了调参的工作。通常使用哑编码的方式将定性特征转换为定量特征:假设有N种定性值,则将这一个特征扩展为N种特征,当原始特征值为第i种定性值时,第i个扩展特征赋值为1,其他扩展特征赋值为0。哑编码的方式相比直接指定的方式,不用增加调参的工作,对于线性模型来说,使用哑编码后的特征可达到非线性的效果。
  • 存在缺失值:缺失值需要补充。
  • 信息利用率低:不同的机器学习算法和模型对数据中信息的利用是不同的,之前提到在线性模型中,使用对定性特征哑编码可以达到非线性的效果。类似地,对定量变量多项式化,或者进行其他的转换,都能达到非线性的效果。
  • 我们使用sklearn中的preproccessing库来进行数据预处理,可以覆盖以上问题的解决方案。

2.1 无量纲

无量纲化使不同规格的数据转换到同一规格。常见的无量纲化方法有标准化和区间缩放法。标准化的前提是特征值服从正态分布,标准化后,其转换成标准正态分布。区间缩放法利用了边界值信息,将特征的取值区间缩放到某个特点的范围,例如[0, 1]等。

2.1.1 标准化

标准化需要计算特征的均值和标准差,公式表达为:
x ′ = x − X s x' = \frac{x-X}{s} x=sxX
其实,就是减均值除标准差
使用preproccessing库的StandardScaler类对数据进行标准化的代码如下:

 from sklearn.preprocessing import StandardScaler
 
 #标准化,返回值为标准化后的数据
 
 StandardScaler().fit_transform(iris.data)

2.1.2 区间缩放法

区间缩放法的思路有多种,常见的一种为利用两个最值进行缩放,公式表达为:
x ′ = x − M i n M a x − M i n x' = \frac{x-Min}{Max - Min} x=MaxMinxMin
其实,就是将数据缩放到[0,1]之间,当然也可以自定义缩放区间
使用preproccessing库的MinMaxScaler类对数据进行区间缩放的代码如下:

from sklearn.preprocessing import MinMaxScaler
 
#区间缩放,返回值为缩放到[0, 1]区间的数据
MinMaxScaler().fit_transform(iris.data)

2.1.3 标准化与归一化的区别

  • 简单来说,标准化是依照特征矩阵的列处理数据,其通过求z-score的方法,将样本的特征值转换到同一量纲下。
  • 归一化是依照特征矩阵的行处理数据,其目的在于样本向量在点乘运算或其他核函数计算相似性时,拥有统一的标准,也就是说都转化为“单位向量”。
  • 规则为l2的归一化公式如下:
    x ′ = x ∑ i = 1 N x [ j ] 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值