低成本Nas之3:群晖7.21 共享问题(包括SMB、DLNA)应该是最正确的处理方法

本次遇到这个问题,才认识到多年以来困扰我的共享问题,原来是SMB版本有讲究。

原来Windows 10 早就摒弃了SMB1.0,之前开windows网络共享有问题,一些教程老是让人去安装windows组件SMB1.0的,原来都是错误的认知或者没有说明白个所以然的。Win10其实是自带默认开启了SMB3版本的协议,正是因为版本太高,导致以往的其他一些旧系统旧设备无法正常登录到共享的文件夹,所以才有各种误导教程让大家去开SMB1.0。

在升级了群晖DSM7版本后,群晖也默认将安全性不高的SMB1.0关闭了,只留SMB2以上,所以我又遇到了同样的问题:在群晖开了共享后,我的华为平板、电视机怎么也连不上群晖的共享。

我在查了各种资料后,网上也有将群晖的SMB降级最低版本为SMB1.0的,但我实在忍受不了那个刺眼的提示说“强烈建议您不要使用SMB1.0模式……”,为保证NAS系统的安全性,决定不按别人的教程行事。

我分了两步走:

一:确保影音系统能访问NAS:开启DLNA多媒体功能:

装完后电脑多了一个媒体设备,电视不需要密码进去,进去后清清爽爽的只有三个东西:音乐/视频/图片,其余不想共享给电视的,都看不见,还能帮你归类:

二:保留SMB高版本,在访问不了SMB3的的华为平板上安装支持SMB的文件管理器(CX文件管理器)

这样,平板也能正常访问了。

至此,共享功能大概是搞得清清楚楚了。

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值