目录
Optimizer
梯度下降是一种使用广泛的机器学习的优化,是类似于线性回归和逻辑回归这些算法的基础(foundation)。
如左图,寻找最小点时,在一个方向上前进,如果我们在这个方向上,拥有一个更大ALPHA,前进的步调可以更大一点;如右图,我们的ALPHA可以更小点。“Adam”算法可以实现。
同一个模型不同参数,也会有不同的ALPHA。
卷积层
对于输入数据,每个神经元对应的输入数据可能不同。
evaluating model评估模型
对于一个例子,我们如何评价它。
先把数据集划分为训练集和测试集。我们需要在训练集上训练模型参数,然后在测试集上测试模型性能。
线性模型
J中最后一项是正则化项。mtrain和mtest是train和test的样本数量。
因为模型在训练集上完美拟合每一个训练数据,则Jtrain会接近于0。用测试集后,测试集数据就不会很好拟合,这使得Jtest很大。
分类
另一种评估方式:
评估数据错误分类的数量