12.optimizer优化器和evaluate评估

目录

Optimizer

卷积层

evaluating model评估模型

线性模型

分类


Optimizer

        梯度下降是一种使用广泛的机器学习的优化,是类似于线性回归和逻辑回归这些算法的基础(foundation)。

         如左图,寻找最小点时,在一个方向上前进,如果我们在这个方向上,拥有一个更大ALPHA,前进的步调可以更大一点;如右图,我们的ALPHA可以更小点。“Adam”算法可以实现。

        同一个模型不同参数,也会有不同的ALPHA

卷积层

 

         对于输入数据,每个神经元对应的输入数据可能不同。

evaluating model评估模型

         对于一个例子,我们如何评价它。

        先把数据集划分为训练集和测试集。我们需要在训练集上训练模型参数,然后在测试集上测试模型性能。

线性模型

        J中最后一项是正则化项。mtrain和mtest是train和test的样本数量。

        因为模型在训练集上完美拟合每一个训练数据,则Jtrain会接近于0。用测试集后,测试集数据就不会很好拟合,这使得Jtest很大。

分类

另一种评估方式:

 

         评估数据错误分类的数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值