AR模型参数估计、Y-W方程、L-D算法原理部分

本文介绍了AR模型参数估计,包括AR模型的原理、参数与自相关函数的关系,重点讲解了Yule-Walker方程的L-D算法,探讨了该算法的优缺点,并提到了AR模型阶数选择的FPE和AIC准则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实验目的

  1. 学习建立随机信号的AR模型
  2. 理解Yule-Walker方程,掌握Levinson-Durbin递推算法;
  3. 掌握FPE、AIC等估计模型阶数。

二、实验内容

  1. 编程实现 Levinson- Durbin递推算法。
  2. 使用AR模型仿真生成随机信号,求解Yue- Walker方程估计AR模型的参数,并与 MATLAB自带函数 anyue进行比较,检验程序是否正确。
  3. 应用FPR、AC等准则估计模型的阶数,并与真实值进行比较。
  4. 讨论AR模型阶数及白噪声方差对参数估计的影响。

三、实验原理及方法

为随机信号建立参数模型是研究随机信号的一种基本方法,其含义是认为随机信号x(n) 是由白噪 w(n) 激励某一确定系统的响应,如图一所示。只要白噪的参数确定了,研究随机信号就可以转化成研究产生随机信号的系统。
在这里插入图片描述
图一 随机信号的参数模型

3.1 AR模型

AR 模型(自回归模型 Auto-regression model)是研究平稳随机信号的一种常用的线性模型。随机信号 x(n) 由本身的若干次过去值x(n-k)和当前的激励值 w(n) 线性组合产生:
在这里插入图片描述
该模型的系统函数是:
在这里插入图片描述
P是系统阶数,系统函数中只有极点,无零点,也称为全极点模型,系统由于极点的原因,要考虑到系统的稳定性,因而要注意极点的分布位置,用AR*p来表示。

3.1.1 AR模型参数估计

随机信号的建模法最近在生物医学信号处理中应用相当普遍,在自发脑电、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值