实验:AR模型参数估计
一、实验目的
- 学习建立随机信号的AR模型
- 理解Yule-Walker方程,掌握Levinson-Durbin递推算法;
- 掌握FPE、AIC等估计模型阶数。
二、实验内容
- 编程实现 Levinson- Durbin递推算法。
- 使用AR模型仿真生成随机信号,求解Yue- Walker方程估计AR模型的参数,并与 MATLAB自带函数 anyue进行比较,检验程序是否正确。
- 应用FPR、AC等准则估计模型的阶数,并与真实值进行比较。
- 讨论AR模型阶数及白噪声方差对参数估计的影响。
三、实验原理及方法
为随机信号建立参数模型是研究随机信号的一种基本方法,其含义是认为随机信号x(n) 是由白噪 w(n) 激励某一确定系统的响应,如图一所示。只要白噪的参数确定了,研究随机信号就可以转化成研究产生随机信号的系统。
图一 随机信号的参数模型
3.1 AR模型
AR 模型(自回归模型 Auto-regression model)是研究平稳随机信号的一种常用的线性模型。随机信号 x(n) 由本身的若干次过去值x(n-k)和当前的激励值 w(n) 线性组合产生:
该模型的系统函数是:
P是系统阶数,系统函数中只有极点,无零点,也称为全极点模型,系统由于极点的原因,要考虑到系统的稳定性,因而要注意极点的分布位置,用AR*p来表示。
3.1.1 AR模型参数估计
随机信号的建模法最近在生物医学信号处理中应用相当普遍,在自发脑电、