算法:最长上升子序列【动态规划】

最长递增子序列

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:

可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
leetcode

题目分析:

  • 求最长递增子序列长度,且子序列无需连续
  • 动态规划:构建一维dp,dp[i]表示以nums[i]结尾时,从nums[0:i]的最长上升子序列的长度
  • 初始化dp[i]为1,表示最长递增子序列只有nums[i]一个
  • 遍历nums:dp[i] = max(dp[j] + 1),0<=j<i,nums[j] < nums[i]
  • 此方法时间复杂度为O(NN),若要优化为O(NlogN),则使用二分查找

在这里插入图片描述

# 动态规划:构建一维dp,dp[i]表示以nums[i]结尾时,从nums[0:i]的最长上升子序列的长度
# dp[i] = max(dp[j] + 1),0<=j<i,nums[j] < nums[i]
# 此方法时间复杂度为O(N*N),若要优化为O(N*logN),则使用二分查找


class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        if nums is None or len(nums) == 0:
            return 0
        dp = [1] * len(nums)
        for i in range(len(nums)):
            for j in range(i):
                if nums[j] < nums[i]:
                    dp[i] = max(dp[i], dp[j]+1)
        # print(dp)
        return max(dp)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值