子集树的应用(0-1背包,轮船装载等问题)

子集树应用篇
对于需要从一些中找子集的问题都可以用子集树解决
为高效快速找到我们需要的子集我们需要对子集树进行剪枝操作
*题目1:*有一组整数,请选择一部分整数,让选择的和剩下的整数,他们的和的差最小

public class childTree04 {
    static int[] arr = {12,52,60,13,32,28,38};
    static int[] x = new int[arr.length];
    static int[] bestx = new int[arr.length];
    static int r = 0;//元素总和
    static int min = Integer.MAX_VALUE;//最下差值
    public static void main(String[] args) {
        for (int i = 0; i < arr.length; i++) {
            r += arr[i];
        }
        backstrace(arr, 0);
        System.out.println("min:" + min);
        System.out.println(Arrays.toString(bestx));
        /*for (int i = 0; i < bestx.length; i++) {
            if(bestx[i] == 1){
                System.out.println(arr[i]);
            }
        }*/
    }
    private static void backstrace(int[] arr, int i) {
        if(i == arr.length){

            int sum = 0;
            for (int j = 0; j < arr.length; j++) {
                if(x[j] == 1){
                    sum += arr[j];
                }
            }
            // sum
            int ret = Math.abs(sum - (r-sum));
            if(ret < min){
                min = ret;
                for (int j = 0; j < x.length; j++) {
                    bestx[j] = x[j];

                }
            }
        } else {
            x[i] = 1;
            backstrace(arr, i+1);
            x[i] = 0;
            backstrace(arr, i+1);
        }
    }
}

一组2n个整数序列,选择其中n个整数,和序列中剩下的n个整数和的差值最小。

import java.util.Arrays;
public class childTree02 {
    static int[] arr = {1,2,3,4};
    static int[] x = new int[arr.length];
    static int[] bestx = new int[arr.length];
    static int r = 0; // 没有选择的整数的和
    static int min = Integer.MAX_VALUE;
    static int choice  = 0;//选择的次数
    public static void main(String[] args) {
        for (int i = 0; i < arr.length; i++) {
            r += arr[i];
        }
        backstrace(arr, 0);
        System.out.println("min:" + min);
        System.out.println(Arrays.toString(bestx));

        /*for (int i = 0; i < bestx.length; i++) {
            if(bestx[i] == 1){
                System.out.println(arr[i]);
            }
        }*/
    }

    private static void backstrace(int[] arr, int i) {
        if(i == arr.length){

            if(choice != arr.length/2){
                return;
            }

            int sum = 0;
            for (int j = 0; j < arr.length; j++) {
                if(x[j] == 1){
                    sum += arr[j];
                }
            }

            // sum
            int ret = Math.abs(sum - r);
            if(ret < min){
                min = ret;
                for (int j = 0; j < x.length; j++) {
                    bestx[j] = x[j];
                }
            }
        } else {
            if(choice < arr.length/2){ // 剪左子树,当前的左边不满足则减去左边arr[i],
                choice += 1;
                r -= arr[i];
                x[i] = 1;
                backstrace(arr, i+1);
                r += arr[i];
                choice -= 1;
            }

            if(choice < arr.length/2){ // 剪右子树
                x[i] = 0;
                backstrace(arr, i+1);
            }
        }
    }
}

下面以轮船装载问题来体会剪枝的高效性
题目:有两艘轮船c1,c2,分别可装载40t,50t,一组质量为w1,w2,w3…的东西装进两所轮船,如何装载最合理?(最好先将装载多的那组装满,剩余装进下一组)

import java.util.Arrays;

/*
* 重量:w1,w2, ......wn
* 两艘轮船容量c1,c2
* w1+w2+..........+wn<=c1+c2
*
* */
public class 轮船装载问题 {
    static int[]w={12,18,21,14,9,10};
    static int c1=50;
    static int c2=34;
    static int[]x=new int[w.length];//标记状态
    static int []bestx=new int[w.length];//装载的分配数组
    static int bestx1=Integer.MIN_VALUE;//最优的结果
    static int c1w=0;
    static int r=0;


    public static void main(String[] args) {
        for(int i=0;i<w.length;i++){
            r+=w[i];
        }
        jude(0);
        //整个装载情况打印
        System.out.println(Arrays.toString(bestx));
        //c1装载的情况打印
        System.out.println("c1"+" "+bestx1);
        for(int i=0;i<bestx.length;i++){
            if(bestx[i]==1){
                System.out.print(w[i]+" ");
            }
        }
        System.out.println();
            //c2装载的情况打印
        System.out.println("c2"+" "+(c1+c2-(c1-bestx1)-bestx1));
        for(int i=0;i<bestx.length;i++){
            if(bestx[i]==0){
                System.out.print(w[i]+" ");
            }
        }
    }
    public static void jude(int i){
        if(i==w.length){
            if(bestx1<c1w){
                bestx1=c1w;
                for(int k=0;k<x.length;k++){
                   bestx[k]=x[k];
                }
            }
        }else {
            r-=w[i];
            if(c1w+w[i]<=c1){
                c1w+=w[i];
                x[i] =1;
                jude(i+1);
                c1w-=w[i];
            }
                 if(c1w+r>bestx1){
                 x[i]=0;
              jude(i+1);
            }
            r+=w[i];
        }
    }
}

0-1背包问题
问题:给定N个物品和一个背包。物品i的重量是Wi,其价值位Vi ,背包的容量为C。问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大?
分析:在不超过背包重量的前提下使得价值达到最大,显然,放入背包的物品,是N个物品的所有子集的其中之一。N个物品中每一个物品,都有选择、不选择两种状态。因此,只需要对每一个物品的这两种状态进行遍历。
代码如下:

public class childTree03 {
    static int[] w = {5, 8, 7};//各个物品的重量
    static int[] v = {12, 9, 13};//物品所对应的价值
    static int c = 18;//背包中重量
    static int choiceW = 0;//选择物品重量
    static int choiceV = 0;//选择物品价值
    static int[] x = new int[w.length];//用于记录选择和不选择的值
    static int[] bestx = new int[w.length];//选择的重量
    static int bestvalue = Integer.MIN_VALUE;//背包的最大价值
    static int r = 0;//总价值

    public static void main(String[] args) {
        for (int i = 0; i < w.length; i++) {
            r += v[i];
        }
        getvaluemax(0);
        System.out.println("bestxvalue:"+bestvalue);
        System.out.println(Arrays.toString(bestx));
    }

    public static void getvaluemax(int i) {
        if (i == w.length) {
//            for (int k = 0; k < w.length; k++) {
//                if (x[k] == 1) {
//                    System.out.println(x[k] + " ");
//                }

            if (choiceV > bestvalue) {
                bestvalue = choiceV;
                for (int k = 0; k < bestx.length; k++) {
                    bestx[k] = x[k];
                }
            }
        } else {
            r -= v[i];//v[i]:除去v[i]之外它的左子树上元素和
            //当前的重量加上之前的重量
            if (choiceW + w[i] <= c) {
                choiceW += w[i];
                choiceV += v[i];
                x[i] = 1;
                getvaluemax(i + 1);
                //从递归函数中出来说明元素未被放入则要减去
                choiceW -= w[i];
                choiceV -= v[i];
            }
            //当前除了右孩树,它的孩子的总价值加上
            if (choiceV + r> bestvalue) {//r:此时不包含i的价值,出当前结点外的做还
                x[i] = 0;
                getvaluemax(i + 1);

            }
            //回溯时要加上
            r+=v[i];

        }
    }
}

结果为:

"C:\Program Files\Java\jdk1.8.0_121\bin\java.exe" -javaagent:C:\IDEA\lib\idea_rt.jar=32632:C:\IDEA\bin -Dfile.encoding=UTF-8 -classpath "C:\Program Files\Java\jdk1.8.0_121\jre\lib\charsets.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\deploy.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\access-bridge-64.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\cldrdata.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\dnsns.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\jaccess.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\jfxrt.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\localedata.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\nashorn.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\sunec.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\sunjce_provider.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\sunmscapi.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\sunpkcs11.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\ext\zipfs.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\javaws.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\jce.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\jfr.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\jfxswt.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\jsse.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\management-agent.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\plugin.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\resources.jar;C:\Program Files\Java\jdk1.8.0_121\jre\lib\rt.jar;C:\IDEAproject\HellloWorld\out\production\HellloWorld" 数据结构之子集树.childTree03
bestxvalue:25
[1, 0, 1]

Process finished with exit code 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值