多任务---进程

进程

什么叫“进程”呢?一个程序运行起来后,代码+用到的资源 称之为进程,它是操作系统分配资源的基本单元。不仅可以通过线程完成多任务,进程也是可以的


线程与进程对比

功能

  • 进程,能够完成多任务,比如 在一台电脑上能够同时运行多个QQ
  • 线程,能够完成多任务,比如 一个QQ中的多个聊天窗口

定义的不同

  • 进程是系统进行资源分配和调度的一个独立单位.
  • 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源.

区别

  • 一个程序至少有一个进程,一个进程至少有一个线程.
  • 线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
  • 进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率
  • 线线程不能够独立执行,必须依存在进程中
  • 可以将进程理解为工厂中的一条流水线,而其中的线程就是这个流水线上的工人

区别

  • 线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程正相反。

进程的建立

  • 进程的创建-multiprocessing

与线程类似,只需要将模块 threading =====> multiprocessing
然后调用该模块中的 Process 创建实例,在用 start() 启动

import time
import multiprocessing


def test1():
    while True:
        print("1------")
        time.sleep(1)


def test2():
    while True:
        print("2------")
        time.sleep(1)


def main():

    p1 = multiprocessing.Process(target=test1) # 创建对象
    p2 = multiprocessing.Process(target=test2)
    p1.start()  # 启动进程
    p2.start()


if __name__ == "__main__":
    main()

Process语法结构

Process([group [, target [, name [, args [, kwargs]]]]])
  • target如果传递了函数的引用,可以任务这个子进程就执行这里的代码
  • args 给target指定的函数传递的参数,以元组的方式传递
  • kwargs 给target指定的函数传递命名参数
  • name 给进程设定一个名字,可以不设定
  • group 指定进程组,大多数情况下用不到
Process创建的实例对象的常用方法:
  • start() 启动子进程实例(创建子进程)
  • is_alive() 判断进程子进程是否还在活着
  • join([timeout]) 是否等待子进程执行结束,或等待多少秒
  • terminate() 不管任务是否完成,立即终止子进程
Process创建的实例对象的常用属性:
  • name 当前进程的别名,默认为Process-N,N为从1开始递增的整数
  • pid 当前进程的pid(进程号)

进程间通信-Queue

  • 首先,进程之间是不共享全局变量的,可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序

Queue的使用

import multiprocessing


def download_from_web():
    # 模拟从网上下载的数据
    data = [11, 22, 33, 44]

    # 向队列中写入数据
    for temp in data:
        q.put(temp)

    print("---下载器已经下载完了数据并且存入到队列中---")


def analysis_data(q):
    """数据处理"""
    waitting_analysis_data = list()
    # 从队列中获取数据
    while True:
        data = q.get()
        waitting_analysis_data.append(data)

        if q.empty():
            break
    # 模拟数据处理
    print(waitting_analysis_data)


def main():
    # 1 创建一个队列
    q = multiprocessing.Queue()

    # 2 创建多个进程,将队列的引用当做实参进行传递到里面
    p1 = multiprocessing.process(target=download_from_web, args=(q, ))
    p2 = multiprocessing.process(target=analysis_data, args=(q, ))
    p1.start()
    p2.start()


if __name__ == "__main__":
    main()
说明
  • q=Queue(n) 初始化 Queue()对象,n为接收消息的最大数量,不写的话就默认系统最大

  • Queue.qsize() 返回当前队列包含的消息数量;

  • Queue.empty() 如果队列为空,返回True,反之False ;

  • Queue.full() 如果队列满了,返回True,反之False;

  • Queue.get([block[, timeout]]) 获取队列中的一条消息,然后将其从列队中移除,block默认值为True;

      1)如果block使用默认值,且没有设置timeout(单位秒)
      消息列队如果为空,此时程序将被阻塞(停在读取状态)
      直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒
      若还没读取到任何消息,则抛出"Queue.Empty"异常;
    
      2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;
    
  • Queue.get_nowait() 相当Queue.get(False);

  • Queue.put(item,[block[, timeout]]) 将item消息写入队列,block默认值为True;

      1)如果block使用默认值,且没有设置timeout(单位秒)
      消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态)
      直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒
      若还没空间,则抛出"Queue.Full"异常;
    
      2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;
    
  • Queue.put_nowait(item) 相当Queue.put(item, False);


进程池Pool

  • 当需要创建任务目标有很多时,逐个创建对应的子进程就很不现实,工作量非常大,这时就可以用multiprocessing模块提供的Pool方法
  • 创建一个 Pool ,指定一个最大进程数,若有新的请求传到 Pool 时,如果 Pool 没满,则就创建进程,若 Pool 已满,那么该请求就会等待 Pool 中某个进程结束,再创建
from multiprocessing import Pool
import os
import time
import random

def worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d" % (msg,os.getpid()))
    # random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2) 
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start))

po = Pool(3)  # 定义一个进程池,最大进程数3
for i in range(0,10):
    # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
    # 每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker,(i,))

print("----start----")
po.close()  # 关闭进程池,关闭后po不再接收新的请求
po.join()  # 等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")
multiprocessing.Pool常用函数解析
  • apply_async(func[, args[, kwds]])
    使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
  • close() 关闭Pool,使其不再接受新的任务;
  • terminate() 不管任务是否完成,立即终止;
  • join() 主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;
进程池中的Queue
  • 如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue()而不是multiprocessing.Queue() 否则会报错

文件夹copy器(多进程版)

import os
import multiprocessing


def copy_file(q, file_name, old_folder_name, new_folder_name):
    """完成文件的复制"""
    # print("======>模拟copy文件:从%s--->到%s 文件名是:%s" % (old_folder_name, new_folder_name, file_name))
    old_f = open(old_folder_name + "/" + file_name, "rb")
    content = old_f.read()
    old_f.close()

    new_f = open(new_folder_name + "/" + file_name, "wb")
    new_f.write(content)
    new_f.close()

    # 如果拷贝完了文件,那么就向队列中写入一个消息,表示已经完成
    q.put(file_name)


def main():
    # 1. 获取用户要copy的文件夹的名字
    old_folder_name = input("请输入要copy的文件夹的名字:")

    # 2. 创建一个新的文件夹
    try:
        new_folder_name = old_folder_name + "[复件]"
        os.mkdir(new_folder_name)
    except:
        pass

    # 3. 获取文件夹的所有的待copy的文件名字  listdir()
    file_names = os.listdir(old_folder_name)
    # print(file_names)

    # 4. 创建进程池
    po = multiprocessing.Pool(5)

    # 5. 创建一个队列
    q = multiprocessing.Manager().Queue()

    # 6. 向进程池中添加 copy文件的任务
    for file_name in file_names:
        po.apply_async(copy_file, args=(q, file_name, old_folder_name, new_folder_name))

    po.close()
    # po.join()
    all_file_num = len(file_names)  # 测一下所有的文件个数
    copy_ok_num = 0
    while True:
        file_name = q.get()
        # print("已经完成copy:%s" % file_name)
        
        copy_ok_num += 1

        print("\n拷贝的进度为:%.2f %%" % (copy_ok_num*100/all_file_num), end="")
        if copy_ok_num >= all_file_num:
            break
            
    print()


if __name__ == "__main__":
    main()


weixin063传染病防控宣传微信小程序系统的设计与实现+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值