进程
什么叫“进程”呢?一个程序运行起来后,代码+用到的资源 称之为进程,它是操作系统分配资源的基本单元。不仅可以通过线程完成多任务,进程也是可以的
线程与进程对比
功能
- 进程,能够完成多任务,比如 在一台电脑上能够同时运行多个QQ
- 线程,能够完成多任务,比如 一个QQ中的多个聊天窗口
定义的不同
- 进程是系统进行资源分配和调度的一个独立单位.
- 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源.
区别
- 一个程序至少有一个进程,一个进程至少有一个线程.
- 线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
- 进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率
- 线线程不能够独立执行,必须依存在进程中
- 可以将进程理解为工厂中的一条流水线,而其中的线程就是这个流水线上的工人
区别
- 线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程正相反。
进程的建立
- 进程的创建-multiprocessing
与线程类似,只需要将模块 threading =====> multiprocessing
然后调用该模块中的 Process 创建实例,在用 start() 启动
import time
import multiprocessing
def test1():
while True:
print("1------")
time.sleep(1)
def test2():
while True:
print("2------")
time.sleep(1)
def main():
p1 = multiprocessing.Process(target=test1) # 创建对象
p2 = multiprocessing.Process(target=test2)
p1.start() # 启动进程
p2.start()
if __name__ == "__main__":
main()
Process语法结构
Process([group [, target [, name [, args [, kwargs]]]]])
- target如果传递了函数的引用,可以任务这个子进程就执行这里的代码
- args 给target指定的函数传递的参数,以元组的方式传递
- kwargs 给target指定的函数传递命名参数
- name 给进程设定一个名字,可以不设定
- group 指定进程组,大多数情况下用不到
Process创建的实例对象的常用方法:
- start() 启动子进程实例(创建子进程)
- is_alive() 判断进程子进程是否还在活着
- join([timeout]) 是否等待子进程执行结束,或等待多少秒
- terminate() 不管任务是否完成,立即终止子进程
Process创建的实例对象的常用属性:
- name 当前进程的别名,默认为Process-N,N为从1开始递增的整数
- pid 当前进程的pid(进程号)
进程间通信-Queue
- 首先,进程之间是不共享全局变量的,可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序
Queue的使用
import multiprocessing
def download_from_web():
# 模拟从网上下载的数据
data = [11, 22, 33, 44]
# 向队列中写入数据
for temp in data:
q.put(temp)
print("---下载器已经下载完了数据并且存入到队列中---")
def analysis_data(q):
"""数据处理"""
waitting_analysis_data = list()
# 从队列中获取数据
while True:
data = q.get()
waitting_analysis_data.append(data)
if q.empty():
break
# 模拟数据处理
print(waitting_analysis_data)
def main():
# 1 创建一个队列
q = multiprocessing.Queue()
# 2 创建多个进程,将队列的引用当做实参进行传递到里面
p1 = multiprocessing.process(target=download_from_web, args=(q, ))
p2 = multiprocessing.process(target=analysis_data, args=(q, ))
p1.start()
p2.start()
if __name__ == "__main__":
main()
说明
-
q=Queue(n) 初始化 Queue()对象,n为接收消息的最大数量,不写的话就默认系统最大
-
Queue.qsize() 返回当前队列包含的消息数量;
-
Queue.empty() 如果队列为空,返回True,反之False ;
-
Queue.full() 如果队列满了,返回True,反之False;
-
Queue.get([block[, timeout]]) 获取队列中的一条消息,然后将其从列队中移除,block默认值为True;
1)如果block使用默认值,且没有设置timeout(单位秒) 消息列队如果为空,此时程序将被阻塞(停在读取状态) 直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒 若还没读取到任何消息,则抛出"Queue.Empty"异常; 2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;
-
Queue.get_nowait() 相当Queue.get(False);
-
Queue.put(item,[block[, timeout]]) 将item消息写入队列,block默认值为True;
1)如果block使用默认值,且没有设置timeout(单位秒) 消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态) 直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒 若还没空间,则抛出"Queue.Full"异常; 2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;
-
Queue.put_nowait(item) 相当Queue.put(item, False);
进程池Pool
- 当需要创建任务目标有很多时,逐个创建对应的子进程就很不现实,工作量非常大,这时就可以用multiprocessing模块提供的Pool方法
- 创建一个 Pool ,指定一个最大进程数,若有新的请求传到 Pool 时,如果 Pool 没满,则就创建进程,若 Pool 已满,那么该请求就会等待 Pool 中某个进程结束,再创建
from multiprocessing import Pool
import os
import time
import random
def worker(msg):
t_start = time.time()
print("%s开始执行,进程号为%d" % (msg,os.getpid()))
# random.random()随机生成0~1之间的浮点数
time.sleep(random.random()*2)
t_stop = time.time()
print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start))
po = Pool(3) # 定义一个进程池,最大进程数3
for i in range(0,10):
# Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
# 每次循环将会用空闲出来的子进程去调用目标
po.apply_async(worker,(i,))
print("----start----")
po.close() # 关闭进程池,关闭后po不再接收新的请求
po.join() # 等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")
multiprocessing.Pool常用函数解析
- apply_async(func[, args[, kwds]])
使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表; - close() 关闭Pool,使其不再接受新的任务;
- terminate() 不管任务是否完成,立即终止;
- join() 主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;
进程池中的Queue
- 如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue()而不是
multiprocessing.Queue()否则会报错
文件夹copy器(多进程版)
import os
import multiprocessing
def copy_file(q, file_name, old_folder_name, new_folder_name):
"""完成文件的复制"""
# print("======>模拟copy文件:从%s--->到%s 文件名是:%s" % (old_folder_name, new_folder_name, file_name))
old_f = open(old_folder_name + "/" + file_name, "rb")
content = old_f.read()
old_f.close()
new_f = open(new_folder_name + "/" + file_name, "wb")
new_f.write(content)
new_f.close()
# 如果拷贝完了文件,那么就向队列中写入一个消息,表示已经完成
q.put(file_name)
def main():
# 1. 获取用户要copy的文件夹的名字
old_folder_name = input("请输入要copy的文件夹的名字:")
# 2. 创建一个新的文件夹
try:
new_folder_name = old_folder_name + "[复件]"
os.mkdir(new_folder_name)
except:
pass
# 3. 获取文件夹的所有的待copy的文件名字 listdir()
file_names = os.listdir(old_folder_name)
# print(file_names)
# 4. 创建进程池
po = multiprocessing.Pool(5)
# 5. 创建一个队列
q = multiprocessing.Manager().Queue()
# 6. 向进程池中添加 copy文件的任务
for file_name in file_names:
po.apply_async(copy_file, args=(q, file_name, old_folder_name, new_folder_name))
po.close()
# po.join()
all_file_num = len(file_names) # 测一下所有的文件个数
copy_ok_num = 0
while True:
file_name = q.get()
# print("已经完成copy:%s" % file_name)
copy_ok_num += 1
print("\n拷贝的进度为:%.2f %%" % (copy_ok_num*100/all_file_num), end="")
if copy_ok_num >= all_file_num:
break
print()
if __name__ == "__main__":
main()