正则表达式
正则表达式(regular expression)描述了一种字符串匹配的模式(pattern),可以用来检查一个串是否含有某种子串、将匹配的子串替换或者从某个串中取出符合某个条件的子串等。
re模块
-
在Python中需要通过正则表达式对字符串进行匹配的时候,可以使用一个模块,名字为re
# 导入re模块 import re # 使用match方法进行匹配操作 result = re.match(正则表达式,要匹配的字符串) # 如果上一步匹配到数据的话,可以使用group方法来提取数据 result.group()
匹配单个字符
字符 | 功能 |
---|---|
. | 匹配任意1个字符(除了\n) |
[ ] | 匹配[ ]中列举的字符 |
\d | 匹配数字,即0-9 |
\D | 匹配非数字,即不是数字 |
\s | 匹配空白,即 空格,tab键 |
\S | 匹配非空白 |
\w | 匹配单词字符,即a-z、A-Z、0-9、_ |
\W | 匹配非单词字符 |
匹配多个字符
字符 | 功能 |
---|---|
* | 匹配前一个字符出现0次或者无限次,即可有可无 |
+ | 匹配前一个字符出现1次或者无限次,即至少有1次 |
? | 匹配前一个字符出现1次或者0次,即要么有1次,要么没有 |
{m} | 匹配前一个字符出现m次 |
{m,n} | 匹配前一个字符出现从m到n次 |
匹配开头结尾
字符 | 功能 |
---|---|
^ | 匹配字符串开头 |
$ | 匹配字符串结尾 |
- 匹配163.com的邮箱地址
ret = re.match("[\w]{4,20}@163.com$", email)
匹配分组
字符 | 功能 |
---|---|
I | 匹配左右任意一个表达式 |
(ab) | 将括号中字符作为一个分组 |
\num | 引用分组num匹配到的字符串 |
(?P<name>) | 分组起别名 |
(?P=name) | 引用别名为name分组匹配到的字符串 |
示例1: |
需求:匹配出0-100之间的数字
ret = re.match("[1-9]?\d$ | 100",“08”)
print(ret.group()) # 不是0-100之间
示例2:( )
需求:匹配出163、126、qq邮箱
re.match("\w{4,20}@(163|126|qq).com", "test@qq.com")
示例3:\
需求:匹配出<html>hh</html>
通过引用分组中匹配到的数据即可,但是要注意是元字符串,即类似 r" " 这种格式
re.match(r"<([a-zA-Z])>\w</\1>", “hh”)
re模块的高级用法
search
匹配出文章阅读的次数
ret = re.search(r"\d+", “阅读次数为 9999”)
findall
统计出python、c、c++相应文章阅读的次数
ret = re.findall(r"\d+", “python = 9999, c = 7890, c++ = 12345”)
sub 将匹配到的数据进行替换
将匹配到的阅读次数加1
ret = re.sub(r"\d+", ‘998’, “python = 997”)
还可以指定位置替换数据
a = ‘你好-欢迎-中国’
a1 = re.sub(r’-’,’’,a,1)