DeepSeek + Python 提效测试用例生成落地

在测试流程中,测试用例生成是一个耗时且重要的环节。测试工程师需要基于需求文档、历史用例和功能模块设计覆盖全面的测试用例,确保产品质量。然而,这个过程容易受到信息分散、重复劳动及遗漏问题的困扰。

通过结合 DeepSeekPython,可以实现以下目标:

  1. 智能生成测试用例:基于需求文档和历史测试用例,推荐或自动生成相关测试场景。
  2. 提高测试覆盖率:利用 DeepSeek 的语义搜索,避免遗漏边界条件、异常测试等关键用例。
  3. 减少重复劳动:复用已有用例并结合需求文档生成新的测试用例。
  4. 团队协作共享:构建统一的测试用例库,支持团队高效查询和复用。

以下内容将详细说明如何将 DeepSeek + Python 的能力扩展到测试用例生成场景,并探讨具体的落地实践和可扩展的应用场景。


一、测试用例生成的应用落地

1. 测试用例生成的主要挑战

  • 需求理解复杂:需求文档措辞复杂,容易遗漏关键信息。
  • 边界条件测试:缺乏自动识别边界条件的工具,全面性不足。
  • 重复设计问题:类似功能模块可能重复设计测试用例,浪费时间。
  • 用例复用难:已有测试用例分散,难以直接复用。

2. DeepSeek + Python 提效解决方案

DeepSeek 提供了强大的 语义搜索知识推荐 能力,可以结合 Python 自动化脚本实现以下功能:

  1. 从需求文档生成基础测试用例
  2. 复用已有用例,并补充新用例
  3. 分析边界条件和异常场景,生成更全面的用例
  4. 构建用例数据库,支持快速查询和共享

以下是具体的实现流程。


二、实现测试用例生成扩展

1. 数据准备:需求文档和历史用例

需求文档

需求文档可以是自由文本的形式,如下所示:

需求文档:用户登录功能
1. 用户输入正确的用户名和密码后,系统应成功登录跳转到首页。
2. 用户输入错误密码时,应提示“密码错误”。
3. 超过 3 次登录失败,系统应锁定账户。
4. 用户名或密码为空时,应提示“用户名或密码不能为空”。
历史用例

将历史测试用例整理为 JSON 格式以供 DeepSeek 使用:

[
  {
   
    "id": "TC001",
    "title": "用户登录-成功登录",
    "description": "测试用户输入正确的用户名和密码后是否成功登录。",
    "steps": [
      "打开登录页面",
      "输入用户名和密码",
      "点击登录按钮"
    ],
    "expected_result": "用户登录成功,跳转至首页",
    "tags": ["登录", "成功路径"]
  },
  {
   
    "id": "TC002",
    
### 如何使用 DeepSeekPython 自动生成测试用例 #### 利用语义搜索和知识推荐能力生成基础测试用例 通过集成 DeepSeek 的强大语义搜索能力和知识推荐引擎,可以从需求文档中取关键信息来创建初步的测试框架。这一步骤能够显著减少手动编写基本测试逻辑的时间成本。 ```python import deepseek as ds def generate_base_test_cases(requirement_doc_path): """基于需求文档生成基础测试用例""" client = ds.Client(api_key='your_api_key') requirements = client.extract_requirements_from_document(requirement_doc_path) test_cases = [] for req in requirements: case_template = f"# 测试 {req['feature']}\n" case_template += f"def test_{ds.utils.slugify(req['description'])}():\n" case_template += " pass\n\n" test_cases.append(case_template) return ''.join(test_cases) ``` [^1] #### 复用已有用例并补充新的测试案例 为了率,在现有项目基础上复用已有的测试用例是非常重要的策略之一。借助于 DeepSeek 对相似度匹配的支持,可以在历史版本或其他模块中的测试集中找到可重复利用的部分,并针对当前项目的特定情况进行调整和完善。 ```python from difflib import SequenceMatcher def find_similar_tests(new_req, existing_tests): """查找与新需求最接近的历史测试用例""" best_match = None highest_ratio = 0 for et in existing_tests: ratio = SequenceMatcher(None, new_req.lower(), et.description.lower()).ratio() if ratio > highest_ratio and ratio >= 0.7: # 设置阈值以过滤不相关项 highest_ratio = ratio best_match = et return best_match existing_tests = [...] # 假设这里是从数据库加载的一系列旧版测试实例对象列表 new_requirement_text = "用户登录成功后应跳转至首页." similar_case = find_similar_tests(new_requirement_text, existing_tests) if similar_case is not None: print(f"发现类似测试:\n{similar_case.code}") else: print("未找到合适的模板.") ``` #### 分析边界条件和异常场景,增强测试覆盖范围 除了正常流程外,还需要特别关注程序可能遇到的各种极端情况以及错误输入的可能性。DeepSeek 可帮助识别潜在的风险点,并指导开发者设计更加严谨细致的验证方案。 ```python def analyze_edge_cases_and_exceptions(feature_description): """根据特性描述分析其边界条件及异常处理要求.""" edge_conditions = [ ("空字符串", ""), ("极大整数", int(9e18)), ("-1作为负索引", -1), ... ] exceptions_to_handle = ["TypeError", "ValueError"] analysis_result = { 'edge': [], 'exception': [] } for cond_name, value in edge_conditions: try: eval(f"{feature_description}(value)") # 这里仅作示意用途;实际应用时需谨慎评估安全性风险. continue except Exception as e: if type(e).__name__ in exceptions_to_handle: analysis_result['exception'].append((cond_name, str(type(e)))) return analysis_result ``` #### 构建用例数据库以便后续维护和支持团队协作 最后,将所有生成或优化后的测试用例存储在一个易于访问的位置对于长期维护至关重要。考虑到不同成员之间可能存在交流障碍,建立统一标准格式化的仓库不仅有助于内部沟通协调,也方便外部审计人员审查工作成果。 ```sql CREATE TABLE IF NOT EXISTS TestCases ( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT UNIQUE NOT NULL, content BLOB NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, updated_at TIMESTAMP ON UPDATE CURRENT_TIMESTAMP ); ``` ```python class TestCaseRepository(): def __init__(self, db_connection_string="sqlite:///testcases.db"): self.conn = sqlite3.connect(db_connection_string) cursor = self.conn.cursor() create_table_query = """ CREATE TABLE IF NOT EXISTS TestCases( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT UNIQUE NOT NULL, content BLOB NOT NULL, created_at DATETIME DEFAULT (datetime('now', 'localtime')), updated_at DATETIME ON CONFLICT REPLACE ); """ cursor.execute(create_table_query) self.conn.commit() def add(self, title, code_content): insert_stmt = '''INSERT INTO TestCases(title,content) VALUES (?,?)''' with closing(sqlite3.connect(":memory:")) as conn: cur = conn.cursor() cur.execute(insert_stmt,(title,pickle.dumps(code_content))) conn.commit() def get_all_titles(self): select_stmt = '''SELECT DISTINCT title FROM TestCases ORDER BY created_at DESC;''' results = pd.read_sql(select_stmt,self.conn)['title'] return list(results.values) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python测试之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值