测试工程师指南:基于需求文档构建本地安全知识库的完整实战

需求文档是测试工程师日常工作的核心工具,如何快速检索需求文档中的关键信息(文本、表格、图片等),并将其转化为可供 AI 查询的知识库,是提升工作效率的重要手段。本文将通过对 需求文档(docx 格式) 的处理,详细讲解如何构建一个 安全的本地知识库,并通过代码实现具体操作,确保每一步都可落地。


一、本地知识库的安全性与连接方案

在构建本地知识库时,安全性是首要考虑的因素,尤其是对于需求文档这样的敏感数据。以下是本地知识库的安全性与连接方案:

  1. 数据隐私:本地知识库完全在本地设备运行,避免将敏感文档上传到云端,确保数据隐私。
  2. 持久化存储:通过 Chroma 的持久化功能,将向量数据库以 SQLite 文件形式保存在本地磁盘。
  3. 访问控制:通过操作系统的权限管理(如文件夹加密、用户权限设置),限制知识库的访问。
  4. 脱离网络运行:知识库和向量计算完全在本地运行,无需联网即可完成所有操作。

以下所有代码均基于本地运行,适配 Windows、Mac 和 Linux 环境。


二、需求文档处理与向量化的完整流程图

针对需求文档(docx 格式),我们需要将文档中的 文本、表格、图片 等内容提取并向量化。以下是完整流程图:

+-------------------------------------------+
|     需求文档加载                           |
|     使用 python-docx 提取 docx 文件内容    |
|     支持文本、表格、图片                   |
+-------------------------------------------+
                   ↓
+-------------------------------------------+
|     数据清洗                               |
|     移除空行、无效字符,提取关键信息       |
+-------------------------------------------+
                   ↓
+-------------------------------------------+
|     文本分割                               |
|     将文本分割为小段(500字左右)          |
|     表格转化为结构化文本                   |
+-------------------------------------------+
                   ↓
+-------------------------------------------+
|     文本向量化                             |
|     使用中文预训练模型生成向量             |
+-------------------------------------------+
                   ↓
+-------------------------------------------+
|     图片向量化                             |
|     使用 OpenAI CLIP 模型生成图片向量      |
+-------------------------------------------+
                   ↓
+-------------------------------------------+
|     存储到向量数据库                      |
|     使用 Chroma 将向量和原始数据存储       |
+-------------------------------------------+
                   ↓
+-------------------------------------------+
|     本地知识库检索                        |
|     根据用户输入,检索最相关的文档片段     |
+-------------------------------------------+

三、处理需求文档的完整实例(docx 格式)

1. 环境准备

安装以下 Python 库:

pip install python-docx chromadb sentence-transformers PIL

2. 加载需求文档

使用 python-docx 提取 docx 文件中的内容(包括文本与表格)。对于图片,则使用 PIL 进行处理。

以下是提取需求文档的代码:

from docx import Document
from PIL import Image
from io import BytesIO
import os

# 提取文本和表格
def extract_text_and_tables(docx_path):
    document = Document(docx_path)
    texts = []
    tables = []

    # 提取段落文本
    for paragraph in document.paragraphs:
        if paragraph.text.strip():  # 去掉空行
            texts.append(paragraph.text.strip())

    # 提取表格内容
    for table in document.tables:
        table_data = []
        for row in table.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python测试之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值