五款值得关注的开源 MCP 服务器

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

以下是五款值得关注的开源 MCP 服务器,它们正帮助 AI 代理从被动回答者转变为主动执行者,使其在处理数据、调用 API 或浏览网页时变得更加高效与“聪明”。


什么是 MCP 服务器?

MCP,全称为 Model Context Protocol,是一种让 AI 模型(如 Claude、ChatGPT 等)能够访问外部数据和工具的协议。相比于传统仅靠训练数据推理的方式,MCP 提供了实时上下文,让 AI 能实际“动手”执行任务,比如浏览网页、读取 GitHub、分析数据文件等。以下五款开源 MCP 服务器正是这一理念的具体实现。


1. Stagehand:让 AI 自由浏览网页

由 Browserbase 开发,Stagehand 让 AI 像拥有浏览器一样,可以点击链接、抓取网页数据、读取内容等。部署方式简洁:

git clone https://github.com/browserbase/stagehand-mcp
cd stagehand-mcp
npm install
npm start

默认运行在 localhost:3000,支持 AI 发出类似“获取今日新闻头条”的请求并自动处理网页数据。它无需编写额外脚本,在价格监控、数据抓取等场景中表现尤为出色。


2. Jupyter MCP:数据分析不再繁琐

由社区开发者 jjsantos01 提供,这个 MCP 服务器让 AI 可以操控 Jupyter Notebook,执行 Python 脚本,处理数据集。对于不精通编程的用户而言,它是一个理想的数据分析工具助手。

安装步骤:

git clone https://github.com/jjsantos01/jupyter-notebook-mcp
cd jupyter-notebook-mcp
pip install -r requirements.txt
python server.py

运行在 localhost:8000,AI 可执行如“分析 coffee.csv 文件中每月的消费”等请求,返回清晰的数据分析结论,而用户无需手动写代码。


3. Opik:追踪 AI 行为,调试更轻松

由 Comet 研发,Opik 是一个用于监控 AI 执行过程的工具。它记录函数调用、响应时间、失败原因等详细信息,是调试复杂 AI 应用时的重要助手。

部署方式:

git clone https://github.com/comet-ml/opik
cd opik
./opik.sh

并可在代码中使用如下方式接入:

import opik

opik.configure(use_local=True)

@opik.track
def ask_something(question):
    return "You asked: " + question

AI 便可请求查看日志,了解每一步行为细节,非常适合用于问题排查与性能优化。


4. GitHub MCP:AI 成为协作开发助手

GitHub 官方推出的 MCP 服务器,允许 AI 读取仓库状态、问题追踪、提交记录等信息,是开发者理想的编码搭档。使用步骤如下:

git clone https://github.com/github/github-mcp-server
cd github-mcp-server
npm install
export GITHUB_TOKEN=your_token
npm start

默认运行在 localhost:4000,支持 AI 执行如“查看 side-hustle 仓库中有哪些未解决的问题”等请求。极大地节省了开发者在 GitHub 页面中频繁切换查找信息的时间。


5. FastAPI-MCP:让 AI 直接调用自定义 API

由 jlowin 开发的 FastAPI-MCP 允许开发者将自己的 FastAPI 应用暴露为 MCP 工具,供 AI 调用。例如,建立一个管理待办事项的接口:

from fastapi import FastAPI
from fastmcp import mcp

app = FastAPI()

@app.get("/todo/{item_id}")
async def get_todo(item_id: int):
    return {"id": item_id, "task": f"Task {item_id}"}

@mcp.tool()
async def get_todo_tool(item_id: int):
    return await get_todo(item_id)

部署后,AI 即可像调用人类接口一样访问任务列表等信息,使 AI 在企业内部工具集成中拥有更高的自由度与实用性。


总结

这五个开源 MCP 服务器——Stagehand、Jupyter MCP、Opik、GitHub MCP、FastAPI-MCP——分别在网页浏览、数据分析、行为追踪、项目管理和 API 调用等方面为 AI 提供了强大的扩展能力。它们都具备以下特点:

  • 完全开源,可自由定制与部署;

  • 本地运行,开发测试更安心;

  • 跨模型兼容,如 Claude、ChatGPT、OpenDevin 等均可使用;

  • 适合开发者打造“行动型 AI”,将 LLM 从问答工具变成生产工具。

这些工具正在改变 AI 与用户的互动模式,从单纯的对话式助手进化为真正的智能代理。未来,MCP 生态或将成为 AI 开发的重要基础设施。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值