pytorch神经网络学习笔记08----一个使用 PyTorch 对卷积神经网络进行超参数优化(基于交叉验证)的示例

下面一个使用 PyTorch 对卷积神经网络进行超参数优化(基于交叉验证)的示例。

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.model_selection import KFold
from skopt import gp_minimize
from skopt.space import Real, Categorical
from skopt.utils import use_named_args

# 定义模型类
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(32 * 8 * 8, 128)
        self.fc2 = nn.Linear(128, 10)
    
    def forward(self, x):
        x = self.pool(nn.functional.relu(self.conv1(x)))
        x = self.pool(nn.functional.relu(self.conv2(x)))
        x = x.view(-1, 32 * 8 * 8)
        x = nn.functional.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 加载数据集
train_loader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)

# 定义交叉验证参数
k = 5

# 定义训练和验证函数
def train(model, train_loader, val_loader, optimizer, criterion, epochs):
    for epoch in range(epochs):
        running_loss = 0.0
        for i, data in enumerate(train_loader):
            inputs, labels = data
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            
        # 输出训练结果
        print('Epoch [%d]/[%d] Loss: %.3f' % (epoch+1, epochs, running_loss/(i+1)))

    # 验证模型
    correct = 0
    total = 0
    with torch.no_grad():
        for data in val_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()

    accuracy = 100 * correct / total
    print('Validation Accuracy: %d %%' % (accuracy))
    return accuracy

# 定义待处理的超参数
space = [
    Real(1e-5, 1e-1, name='learning_rate', prior='log-uniform'),
    Categorical([32, 64, 128], name='hidden_size'),
    Categorical([2, 3, 4], name='num_layers')
]

# 定义超参数优化函数
@use_named_args(space)
def evaluate_model(**params):
    # 初始化 k-fold
    kf = KFold(n_splits=k, shuffle=True)
    accuracies = []
     
    # 交叉验证训练并计算准确率
    for fold, (train_indices, val_indices) in enumerate(kf.split(trainset)):
        # 数据分为训练集和验证集
        train_sampler = torch.utils.data.sampler.SubsetRandomSampler(train_indices)
        val_sampler = torch.utils.data.sampler.SubsetRandomSampler(val_indices)
        train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, sampler=train_sampler)
        val_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, sampler=val_sampler)

        # 初始化模型
        net = CNN()
        
        # 设置超参数
        lr = params['learning_rate']
        hidden_size = params['hidden_size']
        num_layers = params['num_layers']
        
        # 定义损失函数和优化器
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9)

        # 训练模型
        accuracy = train(net, train_loader, val_loader, optimizer, criterion, epochs=10)
        accuracies.append(accuracy)
    
    # 计算平均准确率
    average_accuracy = sum(accuracies) / len(accuracies)
    print('Average Validation Accuracy: %.3f' % (average_accuracy))
    return -average_accuracy

# 运行超参数优化
result = gp_minimize(evaluate_model, space, n_calls=50, verbose=True)
print('Best Validation Accuracy: %.3f' % (-result.fun))
print('Best Parameters: %s' % (result.x))

这个示例代码中,我们首先定义了我们的 CNN 模型,并加载了数据集。

然后我们使用 scikit-optimize 库来定义超参数空间和优化函数,并运行 gp_minimize 函数来执行优化(其中 n_calls 参数为最大评估次数)。在 evaluate_model 函数中,我们首先初始化 k-fold,将数据拆分为训练和验证集,并计算交叉验证的平均准确率。

针对每个超参数集合,我们将其应用于训练和验证的模型中,并输出每次循环的平均准确率(average accuracy)。最后,我们输出最佳的平均准确率以及相应的最佳超参数集合。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
使用PyTorch可以对卷神经网络进行交叉验证。下面是一个使用PyTorch对卷神经网络进行交叉验证示例。 首先,我们定义一个模型类,名为CNN。这个模型类包含了卷层、池化层和全连接层等各种层。以下是CNN模型类的代码: ```python class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(32 * 8 * 8, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.pool(nn.functional.relu(self.conv1(x))) x = self.pool(nn.functional.relu(self.conv2(x))) x = x.view(-1, 32 * 8 * 8) x = nn.functional.relu(self.fc1(x)) x = self.fc2(x) return x ``` 接下来,我们需要定义交叉验证参数和方法。可以使用PyTorch提供的交叉验证工具,比如K-Fold交叉验证。具体的实现方法可以根据具体的需求来设计。可以参考PyTorch官方文档和示例代码来了解更多关于交叉验证的用法。 总之,Python神经网络应用交叉验证可以通过使用PyTorch提供的工具和方法来实现。我们可以定义一个模型类,然后使用交叉验证工具对模型进行验证和评估。这样可以更好地评估模型的性能和泛化能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [pytorch神经网络学习笔记07----一个使用pytorch对卷神经网络交叉验证的例子](https://blog.csdn.net/weixin_44875219/article/details/129648519)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [Python的待完成工作应用程序及其源代码](https://download.csdn.net/download/qq_37270421/88261711)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值