bea_tree的博客

欢迎批评指正

Everyone is an adaptive machine.

Everyone is an adaptive machine. Life experiences are the training data. We should learn from them with severe loss functions. A good learning r...

2017-06-04 21:28:41

阅读数 767

评论数 0

Improving Semantic Segmentation via Video Propagation and Label Relaxation

一篇使用视频信息提升semantic segmentation 精度的工作,可以看成合理的进行data augmentation方法,文章试验做的很全面,总体来说非常扎实。文章继承了英伟达该组之前的sdc net (见本文附录)的工作。 Methodology 使用SDC-net 预测某片段前后...

2019-06-03 22:32:53

阅读数 12

评论数 0

优化程序性能

重温csapp http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/lectures/10-optimization.pdf moving code out of loop # 一些编译器会帮你做 少用乘除 16*x -&am...

2019-05-18 00:20:46

阅读数 12

评论数 0

科普|32位系统为什么只能识别4GB内存

32位系统为什么只能识别4GB内存? 这个问题解答之前首先要弄懂几个概念: 内存 是我们计算机上的临时储存设备,用来存放程序和程序处理的数据,主存(内存)的读取速度要比我们的硬盘要快的多,原因之一就是我们可以在主存中直接寻址,比机械硬盘这种还需要机械读取的存储方式要快很多。 信息存储 我们这里...

2019-05-01 00:44:09

阅读数 24

评论数 0

pybind11 数据交互

pybind提供了较方便的数据交互方式,有很多c++类型可以直接在Python中使用,但是为了使程序更加高效,往往需要手动转换

2019-03-22 00:37:22

阅读数 98

评论数 0

pybind11 numpy转cv::mat;eigen

python语言灵活易用,但是有时效率较低,c++效率较高,pybind可以较好的结合两者。 在c++代码中引入pybind11相关库,pybind可以利用buffer将python中的一些数据类型转化为c++可用的类型。如下代码: #include<iostream>...

2019-03-19 23:15:56

阅读数 87

评论数 0

assert 、raise、python、pyo、__debug__

python中Assert是较为常用的调试工具,利用好assert可以有效的提升编程效率,但是也有很多同学用法不规范。这篇短文主要包括的内容有: Assert与raise exception语句使用的正确场景; python中.pyc与.pyo; python 的__debug__语句...

2019-03-16 01:00:57

阅读数 33

评论数 0

论文笔记|Towards End-to-End Lane Detection: an Instance Segmentation

用尽量少的语言描述一篇paper 本文看点: 结合embedding和Segmentation mask提供一种做Lane Instance Segmentation的思路 Lane的Instance Segmentation可以比单纯的Segmentation适应更多样的路面情况,本文在Se...

2018-11-17 02:56:20

阅读数 204

评论数 4

论文笔记 | Concept Mask:Large-scale Segmentation from semantic concepts

文章主要实现了以下任务: 给定一个概念和一张图片,模型在图像上生产对应区域的mask。 文章主要实现思路: 建立图像特征与word vector之间的映射关系,从而得到attention map 具体方式是: 利用PMI生产word vector 基础网络(如resnet50)提取图像特征之...

2018-11-06 01:27:42

阅读数 118

评论数 0

笔记|初步了解TensorRT

文章目录1. 什么是TensorRT?2. TensorRT 做了哪些优化? 1. 什么是TensorRT? 众所周知神经网络在CV等领域有着非常出众的表现,但是现实部署往往面临网络模型inference时间过大等问题,各类加速尤其是针对inference阶段的加速手段被提出。TensorRT是N...

2018-10-21 21:52:08

阅读数 100

评论数 0

论文笔记| A Network Structure to Explicitly Reduce Confusion Errors in Semantic Segmentation

Abstract 文章认为部分类别之间由于视觉特征相似、网络feature map分辨率过小或者由于数据不均衡等原因,会使模型对这些类别感到confused。为了区分这些confusing classes,文章从网络结构设计(Discriminative Confusing Groups)和lo...

2018-10-10 21:36:48

阅读数 106

评论数 0

mxnet gluon 教程速览

0 什么是Gluon ? 1 预备知识 1.1 NDArray 1.2 autograd自动求导 2 深度学习基础 2.1 线性回归 2.2 多分类逻辑回归 2.3 多层感知机 2.4 欠拟合与过拟合 2.5 正则化 2.6 dropout 2.7 正向传播与反向传播 3 Gluon使...

2018-05-02 20:53:31

阅读数 2886

评论数 0

温故valse|2014XJTU-MengDeyu Matrix Factorization with unknown noise

源自孟德宇老师在2014年valse的网络视频演讲 Deyu Meng, Fernando De la Torre. Robust Matrix Factorization with Unknown Noise. International Conference of Computer...

2018-03-02 21:26:10

阅读数 1853

评论数 1

神经网络梯度下降优化算法及初始化方法小结

An overview of gradient descent optimization algorithms and Weight initialization methods. 神经网络重要的一点就是调参炼丹,这里复习一下网络的初始化方法及优化方法。 然而知道这些并没有什么用,...

2017-10-09 18:53:53

阅读数 3869

评论数 0

论文水记|How to Train Triplet Networks with 100K Identities?

这是来自猎户星空的关于人脸识别的文章 作者 Chong Wang ;Xue Zhang ;Xipeng Lan https://arxiv.org/abs/1709.02940 好久没有写博客了,水一篇。。。一句话总结对应triplet的训练,多采用OHNM的方式挖掘困难负样本,然而随...

2017-09-26 20:28:51

阅读数 3234

评论数 0

Deep Watershed Transform for Instance Segmentation

作者:Min Bai; Raquel Urtasun https://arxiv.org/pdf/1611.08303.pdf 之前效果较好的 Instance segmentation主要是使用proposal的方式,比如FCIS或者Mask rcnn,本文提出了骨骼清奇的深度分水岭...

2017-07-03 22:46:31

阅读数 3702

评论数 0

Deeplab v3 | Rethinking Atrous Convolution for Semantic Image Segmentation

鉴于之前写过deeplab v1与2, 继续读一读新出的v3 整体来说,这篇文章还是在探究两个大家一直在做的问题:全局信息于多尺度信息。另外作者还强调了BN的使用。本文在原有的框架下提出了两种框架: 1. 加长版 2. 增强版ASPP(deeplab v3) 两者都使用了Multi-grid...

2017-06-21 13:04:07

阅读数 11877

评论数 2

FCIS+code | Fully Convolutional Instance-aware Semantic Segmentation

个人觉着RFCN系列的工作还是非常好的,所提出的position sensitive score maps 非常有启发性,包括本文的一些工作都是有很高的价值的。 主要涉及的论文 [1] Instance-sensitive Fully Convolutional Networks ...

2017-06-13 18:01:37

阅读数 4089

评论数 7

VQA 之 Multimodal Compact Bilinear Pooling

涉及论文 [1]Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding https://www.arxiv.org/pdf/1606.01847.pdf [2]C...

2017-06-08 00:07:02

阅读数 5712

评论数 0

CNN入门必读经典:Visualizing and Understanding Convolutional Networks

本文主要是借助deconvnet来可视化卷积网络,这对于理解卷积网络还是非常重要的,同时本文又是13年ImageNet分类任务的冠军。 代码: https://github.com/guruucsd/CNN_visualization1 Deconvolution首先我们先对Deconvolu...

2017-04-03 12:55:38

阅读数 7313

评论数 2

提示
确定要删除当前文章?
取消 删除
关闭
关闭