准备
编译打包
我们在整个项目 (flink-learning)pom.xml 所在文件夹执行以下命令打包:
mvn clean install
然后你会发现在 flink-learning-connectors-es6 的 target 目录下有 flink-learning-connectors-es6-1.0-SNAPSHOT.jar 。
启动 ES
注意你的 Kafka 数据源和 ES 都已经启动好了, 清空了下 ES 目录下的 data 数据,为了就是查看是不是真的有数据存入进来了。
提交 jar 包
将此文件提交到 Flinkserver 上,如下图:
点击下图红框中的”Upload”按钮:
如下图,选中刚刚上传的文件,填写类名,再点击”Submit”按钮即可启动 Job:
查看运行结果
如下图,在 Overview 页面可见正在运行的任务:
你可以看到 Task Manager 中关于任务的 metric 数据
、日志信息以及 Stdout 信息。
查看 Kibana ,此时 ES 中已经有数据了:
我们可以在 flink ui 界面上的 overview cancel 这个 job,那么可以看到 job 的日志:
总结
本篇文章写了下如何将我们的 job 编译打包并提交到 Flink 自带到 Server UI 上面去运行,也算是对前面文章的一个补充,当然了,Flink job 不仅支持这种模式的运行,它还可以运行在 K8s,Mesos,等上面,等以后我接触到再写写。