线性算法及应用(3)

本文深入探讨了线性差分方程的性质,包括n阶差分方程如何转换为一阶形式,以及如何通过特征值和特征向量分析动力系统的行为。介绍了主特征值和主特征向量的概念,以及它们在动力系统长期行为中的作用。此外,还讲解了动力系统的解耦和复特征值情况下的解表示。最后,提到了 Predator-Prey System 和 Power Method 在求解特征值问题中的应用。
摘要由CSDN通过智能技术生成

n阶差分方程

  • n阶齐次线性差分方程 y k + n + a 1 y k + n − 1 + ⋯ + a n y k = 0 y_{k+n}+a_1y_{k+n-1}+\cdots+a_ny_{k}=0 yk+n+a1yk+n1++anyk=0,可以写成一阶差分方程 x k + 1 = A x k ,   A ∈ R n × n x_{k+1}=Ax_{k},\,A \in R^{n \times n} xk+1=Axk,ARn×n

  • 对于 x k + 1 = A x k x_{k+1}=Ax_{k} xk+1=Axk,如果 A A A拥有n个线性无关的特征向量 v 1 , ⋯   , v n v_1,\cdots,v_n v1,,vn (当仅当 A A A可对角化),并且满足 ∣ λ 1 ∣ ≥ ⋯ ≥ ∣ λ n ∣ |\lambda_1| \ge \cdots \ge |\lambda_n| λ1λn λ 1 \lambda_1 λ1叫做主特征值,那么 S p a n { v 1 , ⋯   , v n } = R n Span\{v_1,\cdots,v_n\} = R^n Span{v1,,vn}=Rn,对于任意初始状态都有唯一的 x 0 = c 1 v 1 + ⋯ + c n v n x_0 = c_1v_1+\cdots+c_nv_n x0=c1v1++cnvn,于是动力系统可以写作:
    x k = A k x 0 = c 1 λ 1 k v 1 + ⋯ + c n λ n k v n ,   k = 0 , 1 , ⋯ x_k = A^k x_0 = c_1\lambda_1^kv_1 + \cdots + c_n\lambda_n^kv_n,\, k=0,1,\cdots xk=Akx0=c1λ1kv1++cnλnkvn,k=0,1,

  • Predator-Prey System:如果 ∣ λ 1 ∣ ≥ 1 ,   1 > ∣ λ 2 ∣ ⋯ ≥ ∣ λ n ∣ |\lambda_1| \ge 1,\,1 > |\lambda_2|\cdots \ge |\lambda_n| λ11,1>λ2λn,那么对于足够大的 k k k,有: x k ≈ c 1 λ 1 k v 1 x_k \approx c_1\lambda_1^kv_1 xkc1λ1kv1 以及 x k + 1 ≈ λ 1 x k x_{k+1} \approx \lambda_1 x_k xk+1λ1xk

  • The Power Method

    • 由于 x k = A k x 0 → c 1 ( λ 1 ) k v 1 x_k = A^k x_0 \rightarrow c_1 (\lambda_1)^{k} v_1 xk=Akx0c1(λ1)kv1,就是说 x k x_k xk会越来越靠近 v 1 v_1 v1所在的特征子空间。
    • 选取最大元素是1的起始向量 y 0 y_0 y0;迭代:计算 s k = A y k s_k=Ay_k sk=Ayk,令 μ k \mu_k μk是其中绝对值最大的向量元素,计算 y k + 1 = s k / μ k y_{k+1}=s_k/\mu_k yk+1=sk/μk
    • 几乎所有的 y 0 y_0 y0选择,迭代多次后, { μ k } \{\mu_k\} {μk}收敛于主特征值 λ 1 \lambda_1 λ1 { y k } \{y_k\} {yk}收敛于 v 1 v_1 v1
  • The Inverse Power Method

    • 对于 B = ( A − α I ) − 1 B=(A-\alpha I)^{-1} B=(AαI)1,那么 B B B的特征值为 1 λ 1 − α , ⋯   , 1 λ n − α \frac{1}{\lambda_1-\alpha},\cdots,\frac{1}{\lambda_n-\alpha} λ1α1,,λnα1,并且对应的特征向量等于 v 1 , ⋯   , v n v_1,\cdots,v_n v1,,vn;如果 α \alpha α靠近 λ i \lambda_i λi,那么 1 λ i − α \frac{1}{\lambda_i-\alpha} λiα1 B B B主特征值
    • 选取一个接近 λ i \lambda_i λi α \alpha α以及最大元素是1的初始向量 y 0 y_0 y0;迭代:计算 s k = B y k s_k=By_k sk=Byk,令 μ k \mu_k μk是其中绝对值最大的向量元素,计算 v k = α + 1 μ k v_k=\alpha+\frac{1}{\mu_k} vk=α+μk1 y k + 1 = s k / μ k y_{k+1}=s_k/\mu_k yk+1=sk/μk
    • 几乎所有的 y 0 y_0 y0选择,迭代多次后, { v k } \{v_k\} {vk}收敛于特征值 λ i \lambda_i λi { y k } \{y_k\} {yk}收敛于 v i v_i vi
  • 三角阵 A ∈ R n × n A \in R^{n \times n} ARn×n的特征值就是主对角线元素 A i i A_{ii} Aii,对应的特征向量是齐次方程 ( A − A i i I ) x = 0 (A-A_{ii}I)x=0 (AAiiI)x=0的解空间;特别地, e 1 e_1 e1是特征向量,并对应于 λ 1 \lambda_1 λ1

  • 对角阵 A ∈ R n × n A \in R^{n \times n} ARn×n的特征值就是主对角线元素 A i i A_{ii} Aii,对应的特征向量是单位向量 e i e_i ei

  • 如果 A A A可对角化,那么 A = P D P − 1 A=PDP^{-1} A=PDP1 P = [ v 1 , ⋯   , v n ] ,   D = d i a g ( λ 1 , ⋯   , λ n ) P=[v_1,\cdots,v_n],\, D=diag(\lambda_1,\cdots,\lambda_n) P=[v1,,vn],D=diag(λ1,,λn)

    x k + 1 = A x k x_{k+1}=Ax_k xk+1=Axk可以转化成 y k + 1 = D y k y_{k+1}=Dy_k yk+1=Dyk,其中 y k = P − 1 x k y_k=P^{-1}x_k yk=P1xk (也就是说, [ x k ] P = y k [x_k]_P = y_k [xk]P=yk);

    易知,
    y k = D k y 0 = c 1 λ 1 k e 1 + ⋯ + c n λ n k e n ,   k = 0 , 1 , ⋯ y_k = D^k y_0 = c_1\lambda_1^ke_1 + \cdots + c_n\lambda_n^ke_n,\, k=0,1,\cdots yk=Dky0=c1λ1ke1++cnλnken,k=0,1,
    其中 y 0 = c 1 e 1 + ⋯ + c n e n y_0 = c_1e_1+\cdots+c_ne_n y0=c1e1++cnen,且这里的 c i c_i ci等于 x 0 = c 1 v 1 + ⋯ + c n v n x_0 = c_1v_1+\cdots+c_nv_n x0=c1v1++cnvn里的 c i c_i ci

差分方程组

  • 差分方程组
    x 1 ′ =    a 11 x 1 + ⋯ + a 1 n x n x 2 ′ =    a 21 x 1 + ⋯ + a 2 n x n ⋮ x n ′ =    a n 1 x 1 + ⋯ + a n n x n \begin{aligned} x_1' =&\,\, a_{11}x_1 + \cdots + a_{1n}x_n\\ x_2' =&\,\, a_{21}x_1 + \cdots + a_{2n}x_n\\ \vdots\\ x_n' =&\,\, a_{n1}x_1 + \cdots + a_{nn}x_n\\ \end{aligned} x1=x2=xn=a11x1++a1nxna21x1++a2nxnan1x1++annxn
    其中 x i x_i xi是关于 t t t的连续可微函数, x i ′ x_i' xi是对应的导数, a i j a_{ij} aij是常数。

    写作矩阵形式: x ′ ( t ) = A ⋅ x ( t ) x'(t) = A \cdot x(t) x(t)=Ax(t)
    x ( t ) = [ x 1 ( t ) ⋮ x n ( t ) ] ,     x ′ ( t ) = [ x 1 ′ ( t ) ⋮ x n ′ ( t ) ] ,     A = [ a 11 ⋯ a 1 n ⋮ ⋮ a n 1 ⋯ a n n ] \begin{aligned} x(t) = \begin{bmatrix} x_1(t)\\ \vdots\\ x_n(t)\\ \end{bmatrix},\,\,\, x'(t) = \begin{bmatrix} x_1'(t)\\ \vdots\\ x_n'(t)\\ \end{bmatrix},\,\,\, A = \begin{bmatrix} a_{11} & \cdots & a_{1n}\\ \vdots & & \vdots\\ a_{n1} & \cdots & a_{nn}\\ \end{bmatrix}\\ \end{aligned} x(t)=x1(t)xn(t),x(t)=x1(t)xn(t),A=a11an1a1nann
    方程组的,定义为关于t的向量函数,它对于所有的 t ≥ 0 t \ge 0 t0方程组都成立。

  • 解空间

    • 线性 u ′ = A u ,   v ′ = A v    ⟺    ( c u + d v ) ′ = A ( c u + d v ) u'=Au,\,v'=Av \iff (cu+dv)' = A(cu+dv) u=Au,v=Av(cu+dv)=A(cu+dv)
    • 平凡的解:零函数
    • 方程组 x ′ ( t ) = A ⋅ x ( t ) x'(t) = A \cdot x(t) x(t)=Ax(t)的解空间是在 R n R^n Rn上的所有连续函数集合的子空间
    • 对于n阶方阵 A A A,存在n个线性无关的函数,使得每一个解都可以被它们唯一线性表出;这组函数叫做基本解集 (fundamental set of solutions),是解空间 (函数的n维向量空间) 的一组基。
  • 例如方程组
    [ x 1 ′ ( t ) x 2 ′ ( t ) ] = [ 3 0 0 − 5 ] [ x 1 ( t ) x 2 ( t ) ] \begin{aligned} \begin{bmatrix} x_1'(t)\\ x_2'(t)\\ \end{bmatrix} = \begin{bmatrix} 3 & 0\\ 0 & -5\\ \end{bmatrix} \begin{bmatrix} x_1(t)\\ x_2(t)\\ \end{bmatrix} \end{aligned} [x1(t)x2(t)]=[3005][x1(t)x2(t)]
    那么所有的解可表示为
    [ x 1 ( t ) x 2 ( t ) ] = [ c 1 e 3 t c 2 e − 5 t ] = c 1 [ 1 0 ] e 3 t + c 2 [ 0 1 ] e − 5 t \begin{aligned} \begin{bmatrix} x_1(t)\\ x_2(t)\\ \end{bmatrix} = \begin{bmatrix} c_1e^{3t}\\ c_2e^{-5t}\\ \end{bmatrix} = c_1 \begin{bmatrix} 1\\ 0\\ \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 0\\ 1\\ \end{bmatrix} e^{-5t} \end{aligned} [x1(t)x2(t)]=[c1e3tc2e5t]=c1[10]e3t+c2[01]e5t
    这个方程组中,每个导数只和本身有关 (含有多个变量的数学方程变成能够用单个变量表示的方程组),叫做解耦的 (decoupled)

  • 如果 x ( t ) = v e λ t x(t)=ve^{\lambda t} x(t)=veλt x ′ = A x x'=Ax x=Ax的解,那么有 x ′ ( t ) = λ v e λ t = A x ( t ) = A v e λ t x'(t) = \lambda v e^{\lambda t} = A x(t) = A v e^{\lambda t} x(t)=λveλt=Ax(t)=Aveλt,从而 A v = λ v Av=\lambda v Av=λv,即 A A A的每个特征值-特征向量对都确定一个解,叫做差分方程组的特征函数(eigenfunctions)。可以证明,任意差分方程组 x ′ = A x x'=Ax x=Ax,每一个解都是形如 x ( t ) = v e λ t x(t)=ve^{\lambda t} x(t)=veλt的函数的线性组合: x ( t ) = ∑ i c i v i e λ i t x(t) = \sum_i c_i v_i e^{\lambda_i t} x(t)=icivieλit,其中的 c i c_i ci可由初值 x ( 0 ) x(0) x(0)确定。

  • 动力系统的解耦:如果 A A A可对角化, A = P D P − 1 A=PDP^{-1} A=PDP1,令 y ( t ) = P − 1 x ( t ) y(t)=P^{-1}x(t) y(t)=P1x(t),那么 y ′ = D y    ⟺    x ′ = A x y'=Dy \iff x'=Ax y=Dyx=Ax
    y ( t ) = [ c 1 e λ 1 t ⋮ c n e λ n t ] ,    [ c 1 ⋮ c n ] = y ( 0 ) = P − 1 x ( 0 ) y(t)= \begin{bmatrix} c_1e^{\lambda_1 t}\\ \vdots\\ c_ne^{\lambda_n t}\\ \end{bmatrix},\,\, \begin{bmatrix} c_1\\ \vdots\\ c_n\\ \end{bmatrix} = y(0) = P^{-1}x(0) y(t)=c1eλ1tcneλnt,c1cn=y(0)=P1x(0)
    向量 y ( t ) y(t) y(t)的每一个分量 y i ( t ) y_i(t) yi(t)都仅与某一个特征值相关。

  • 如果 λ \lambda λ A A A的复特征值,对应特征向量 v v v,那么 x 1 ( t ) = v e λ t x_1(t)=v e^{\lambda t} x1(t)=veλt x 2 ( t ) = v ˉ e λ ˉ t x_2(t)=\bar v e^{\bar \lambda t} x2(t)=vˉeλˉt x ′ = A x x'=Ax x=Ax的一对复数解,且 x 2 ( t ) = x 1 ( t ) ‾ x_2(t) = \overline{x_1(t)} x2(t)=x1(t),于是 R e ( x 1 ( t ) ) = x 1 ( t ) + x 1 ( t ) ‾ 2 Re(x_1(t)) = \frac{x_1(t) + \overline{x_1(t)}}{2} Re(x1(t))=2x1(t)+x1(t) I m ( x 1 ( t ) ) = x 1 ( t ) − x 1 ( t ) ‾ 2 i Im(x_1(t)) = \frac{x_1(t) - \overline{x_1(t)}}{2i} Im(x1(t))=2ix1(t)x1(t)是方程组的一对实数解

  • 如果 λ = a + b i \lambda=a+bi λ=a+bi,那么由于 e ( a + b i ) t = e a t ( cos ⁡ b t + i sin ⁡ b t ) e^{(a+bi)t} = e^{at}(\cos{bt}+i \sin{bt}) e(a+bi)t=eat(cosbt+isinbt),因此:
    y 1 ( t ) = R e ( x 1 ( t ) ) = [ R e ( v ) cos ⁡ b t − I m ( v ) sin ⁡ b t ] e a t y 2 ( t ) = I m ( x 1 ( t ) ) = [ R e ( v ) cos ⁡ b t + I m ( v ) sin ⁡ b t ] e a t \begin{aligned} y_1(t) = Re(x_1(t)) = [Re(v)\cos{bt} - Im(v)\sin{bt}]e^{at}\\ y_2(t) = Im(x_1(t)) = [Re(v)\cos{bt} + Im(v)\sin{bt}]e^{at}\\ \end{aligned} y1(t)=Re(x1(t))=[Re(v)cosbtIm(v)sinbt]eaty2(t)=Im(x1(t))=[Re(v)cosbt+Im(v)sinbt]eat
    b ≠ 0 b\not = 0 b=0时,实数解 y 1 ,   y 2 y_1,\,y_2 y1,y2线性无关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值