算法讲解—最小生成树(Kruskal 算法)
简介
根据度娘的解释我们可以知道,最小生成树(Minimum Spanning Tree, MST)就是:一个有 n n n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n n n 个结点,并且有保持图连通的最少的边。
简单点来说就是求最小的连通图,就是从一个点能到达图的任意一点,且花费的代价最小(所有边的权值最小)。
最小生成树问题通常用于网络设计、电路设计等领域,目的是找到连接所有节点的最低成本方式。常见的算法有克鲁斯卡尔算法(Kruskal)和普里姆算法(Prim)等。
Kruskal 算法
要实现最小生成树,最著名的就是 Kruskal 算法。
Kruskal 算法是一种用来求解最小生成树问题的贪心算法。最小生成树问题是指在一个连通带权无向图中找到一个生成树,使得所有边的权重之和最小。
Kruskal 算法的基本思想是从小到大选择边,直到选出 n − 1 n-1 n−1 条边为止( n n n 为节点数)。具体步骤如下:
-
将图中的所有边按照权重从小到大进行排序。
-
初始化一个空的集合 M M M,用来存放最小生成树的边。
-
遍历排序后的边,如果当前边的两个端点不在同一个连通分量中,则将这条边加入集合 M M M ,并将两个端点所在的连通分量合并。
-
重复步骤 3 3 3,直到集合 M M M 中的边数达到 n − 1 n-1 n−1 条,其中 n n n 为节点数。
-
最后得到的集合 M M M 就是最小生成树。
Kruskal 算法的时间复杂度主要取决于排序边的时间复杂度,通常使用快速排序等快速的排序算法,因此总的时间复杂度为 O ( E log E ) O(E \log E) O(ElogE),其中 E E E 为边数。
需要注意的是,在实际应用中,Kruskal 算法还需要对图进行一些预处理,如可以先对边进行去重、排序等操作,以提高算法的效率。
引用一张百度的图片
代码实现
Python(由 AI 生成)
class DisjointSet:
def __init__(self):
self.parent = {}
self.rank = {}
def make_set(self, node):
self.parent[node] = node
self.rank[node] = 0
def find_set(self, node):
if self.parent[node] != node:
self.parent[node] = self.find_set(self.parent[node])
return self.parent[node]
def union_sets(self, node1, node2):
root1 = self.find_set(node1)
root2 = self.find_set(node2)
if root1 != root2:
if self.rank[root1] > self.rank[root2]:
self.parent[root2] = root1
elif self.rank[root1] < self.rank[root2]:
self.parent[root1] = root2
else:
self.parent[root2] = root1
self.rank[root1] += 1
def kruskal(edges, n):
disjoint_set = DisjointSet()
for i in range(n):
disjoint_set.make_set(i)
edges.sort(key=lambda edge: edge[2])
result = []
for edge in edges:
node1, node2, weight = edge
root1 = disjoint_set.find_set(node1)
root2 = disjoint_set.find_set(node2)
if root1 != root2:
disjoint_set.union_sets(node1, node2)
result.append(edge)
return result
C++ (由 AI 生成)
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
struct Edge {
int u, v, weight;
bool operator<(const Edge& other) const {
return weight < other.weight;
}
};
int findParent(vector<int>& parent, int i) {
if (parent[i] == -1) return i;
return parent[i] = findParent(parent, parent[i]);
}
void kruskal(vector<Edge>& edges, int n) {
vector<int> parent(n, -1);
int num_edges = 0;
int result = 0;
sort(edges.begin(), edges.end());
for (const auto& edge : edges) {
int u_parent = findParent(parent, edge.u);
int v_parent = findParent(parent, edge.v);
if (u_parent != v_parent) {
parent[u_parent] = v_parent;
result += edge.weight;
num_edges++;
if (num_edges == n - 1) break; // 加上n-1条边即可构成最小生成树
}
}
if (num_edges < n - 1) {
cout << "无法构成最小生成树" << endl;
} else {
cout << "最小生成树的权值总和为: " << result << endl;
}
}
int main() {
int n, m; // n为顶点数,m为边数
cin >> n >> m;
vector<Edge> edges(m);
for (int i = 0; i < m; ++i) {
int u, v, weight;
cin >> u >> v >> weight;
edges[i] = {u, v, weight};
}
kruskal(edges, n);
return 0;
}
洛谷模版题
板子代码
#include <bits/stdc++.h>
using namespace std;
int n, m, sum, ans, fa[10005];
struct node {
int x, y, z;
}f[200005];
int find(int x) {return x == fa[x] ? x : fa[x] = find(fa[x]);}
bool cmp (node a, node b) {return a.z < b.z;}
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++) {
fa[i] = i;
}
for (int i = 1; i <= m; i ++) {
cin >> f[i].x >> f[i].y >> f[i].z;
}
sort (f + 1, f + m + 1, cmp);
for (int i = 1; i <= m; i ++) {
if (find(f[i].x) != find(f[i].y)) {
sum ++;
fa[find(f[i].y)] = find(f[i].x);
ans += f[i].z;
}
else continue;
if (sum == n - 1) {
cout << ans;
return 0;
}
}
cout << "orz";
return 0;
}
推荐好题
参考
-
https://baike.baidu.com/item/%E6%9C%80%E5%B0%8F%E7%94%9F%E6%88%90%E6%A0%91/5223845?fr=ge_ala
-
https://blog.csdn.net/2301_79188764/article/details/142172901
-
https://www.dotcpp.com/course/1061
-
https://baike.baidu.com/item/%E5%85%8B%E9%B2%81%E6%96%AF%E5%8D%A1%E5%B0%94%E7%AE%97%E6%B3%95/4455899?fr=ge_ala