之前写过如何判断多项式是否不可约,已知分圆多项式都是有理数域上的不可约的整系数多项式。根据剩余类判别法,存在一些素域,使得分圆多项式在其上也是不可约的。那么,给定一个有限域,哪些分圆多项式是不可约的?进一步的,所有的不可约多项式是哪些?
莫比乌斯函数
莫比乌斯函数是如下分段函数:
μ
(
n
)
=
{
1
,
n
=
1
(
−
1
)
k
,
n
=
p
1
p
2
⋯
p
k
0
,
o
t
h
e
r
s
\mu(n) = \left\{ \begin{aligned} 1, && n&=1\\ (-1)^k, && n&=p_1 p_2 \cdots p_k\\ 0, && o&thers \end{aligned} \right.
μ(n)=⎩
⎨
⎧1,(−1)k,0,nno=1=p1p2⋯pkthers
-
它是一个积性函数: ∀ gcd ( a , b ) = 1 , μ ( a b ) = μ ( a ) μ ( b ) \forall\gcd(a,b)=1, \mu(ab)=\mu(a)\mu(b) ∀gcd(a,b)=1,μ(ab)=μ(a)μ(b)
-
对于 n ∈ Z + n \in \mathbb Z^+ n∈Z+,它满足
∑ d ∣ n μ ( d ) = 1 if n=1 else 0 \sum_{d\mid n} \mu(d) = 1 \text{ if n=1 else 0} d∣n∑μ(d)=1 if n=1 else 0 -
对于 n ∈ Z + n \in \mathbb Z^+ n∈Z+,它满足
∑ d ∣ n μ ( d ) d = ϕ ( n ) n \sum_{d\mid n} \frac{\mu(d)}{d} = \frac{\phi(n)}{n} d∣n∑dμ(d)=nϕ(n)与欧拉函数联系起来了
有限域上分圆多项式的性质
有限域
F
q
F_q
Fq,特征
p
p
p,令
(
n
,
p
)
=
1
(n,p)=1
(n,p)=1,那么
F
q
F_q
Fq上的
n
n
n阶分圆多项式,都可表示为:
Q
n
(
x
)
=
∏
d
∣
n
(
x
d
−
1
)
μ
(
n
/
d
)
=
∏
d
∣
n
(
x
n
/
d
−
1
)
μ
(
d
)
Q_n(x) = \prod_{d \mid n} (x^d - 1)^{\mu(n/d)} = \prod_{d \mid n} (x^{n/d} - 1)^{\mu(d)}
Qn(x)=d∣n∏(xd−1)μ(n/d)=d∣n∏(xn/d−1)μ(d)
为了计算莫比乌斯函数 μ ( d ) \mu(d) μ(d),可以做整数的素分解(例如筛法)。一般地 n n n 是多项式复杂度的,因此用最简单的筛法效率也还行。
令 r r r是素数, m m m是任意正整数,那么
-
若 r ∤ m r \nmid m r∤m,那么
Q m r ( x ) = Q m ( x r ) Q m ( x ) Q_{mr}(x) = \frac{Q_m(x^r)}{Q_m(x)} Qmr(x)=Qm(x)Qm(xr) -
若 r ∣ m r \mid m r∣m,那么
Q m r ( x ) = Q m ( x r ) Q_{mr}(x) = Q_m(x^r) Qmr(x)=Qm(xr) -
令 k k k是正整数,那么
Q m r k ( x ) = Q m r ( x r k − 1 ) Q_{mr^k}(x) = Q_{mr}(x^{r^{k-1}}) Qmrk(x)=Qmr(xrk−1) -
若 n ≥ 3 n \ge 3 n≥3,且 n n n是奇数,那么
Q 2 n ( x ) = Q n ( − x ) Q_{2n}(x) = Q_n(-x) Q2n(x)=Qn(−x)
有限域上分圆多项式的不可约性
F
q
F_q
Fq是有限域,整数
n
>
1
n>1
n>1且
(
n
,
q
)
=
1
(n,q)=1
(n,q)=1,那么
Q
n
Q_n
Qn可以在
F
q
[
x
]
F_q[x]
Fq[x]上分解为
ϕ
(
n
)
/
d
\phi(n)/d
ϕ(n)/d 个不同的
d
d
d 次首一不可约多项式之积,其中
d
d
d 是
q
m
o
d
n
q \mod n
qmodn 的指数,即
Q
n
(
x
)
=
∏
i
=
1
ϕ
(
n
)
/
d
p
i
(
x
)
Q_n(x) = \prod_{i=1}^{\phi(n)/d} p_i(x)
Qn(x)=i=1∏ϕ(n)/dpi(x)
其中 p i ( x ) p_i(x) pi(x)不可约, deg ( p i ) = d = o r d ( q m o d n ) \deg(p_i)=d=ord(q \mod n) deg(pi)=d=ord(qmodn), deg ( Q n ) = ϕ ( n ) \deg(Q_n)=\phi(n) deg(Qn)=ϕ(n)
因此, Q n Q_n Qn 在 F q F_q Fq 上不可约 ⟺ \iff ⟺ q m o d n q \mod n qmodn 的指数为 ϕ ( n ) \phi(n) ϕ(n)( q q q是 Z n ∗ \mathbb Z_n^* Zn∗的原根)
根据数论知识, Z n ∗ \mathbb Z_n^* Zn∗ 中存在原根 ⟺ \iff ⟺ n = 2 , 4 , p r , 2 p r n = 2,4,p^r,2p^r n=2,4,pr,2pr,其中 p p p是奇素数, r r r是正整数(已经忘干净了 (;′⌒`))
因此, ( n , q ) = 1 (n,q)=1 (n,q)=1的有限域 F q F_q Fq 上 Q n Q_n Qn 不可约,那么恰有: n = 2 , 4 , p r , 2 p r n = 2,4,p^r,2p^r n=2,4,pr,2pr。于是,任意有限域上,可约的分圆多项式有无限个,同时不可约的分圆多项式也有无限个。
如果
a
≢
0
m
o
d
p
a \not \equiv 0 \mod p
a≡0modp,其中
p
p
p是奇素数,那么 Legendre 符号为:
(
a
p
)
≡
a
p
−
1
2
m
o
d
p
\left({a \over p}\right) \equiv a^{\frac{p-1}{2}} \mod p
(pa)≡a2p−1modp
当素数形如 p = 8 m ± 1 p=8m \pm 1 p=8m±1,那么 2 2 2是二次剩余。嘚嘚嘚,推出:如果 Q n Q_n Qn在 Z 2 \mathbb Z_2 Z2上不可约,要么 n ≡ ± 3 m o d 8 n\equiv \pm 3 \mod 8 n≡±3mod8是素数,或者 n = p 2 n=p^2 n=p2其中 p ≡ ± 3 m o d 8 p\equiv \pm 3 \mod 8 p≡±3mod8是素数。反之不成立。
有限域上所有的不可约多项式
有限域
F
q
[
x
]
F_q[x]
Fq[x]中,所有的次数整除
n
n
n的首一不可约多项式之积:
x
q
n
−
x
=
∏
d
∣
n
∏
deg
(
p
i
)
=
d
p
i
(
x
)
x^{q^n}-x = \prod_{d \mid n} \prod_{\deg(p_i)=d} p_i(x)
xqn−x=d∣n∏deg(pi)=d∏pi(x)
也就是说,扩域 F q n F_{q^n} Fqn中的所有元素,恰是这些不可约多项式在代数闭包中的根。任意一个 deg ( p i ) = d \deg(p_i)=d deg(pi)=d的不可约多项式,它有一个根 α ∈ F q d ≤ F q n \alpha \in F_{q^d} \le F_{q^n} α∈Fqd≤Fqn,那么所有的不同的根为共轭集合 { α , α q , ⋯ , α q d − 1 } ∈ F q d \{\alpha,\alpha^q,\cdots,\alpha^{q^{d-1}}\} \in F_{q^d} {α,αq,⋯,αqd−1}∈Fqd,且它们的乘法阶都是 l l l,它使得 d d d是满足 q d ≡ 1 m o d l q^d \equiv 1 \mod l qd≡1modl的最小正整数,即 d = o r d ( q m o d l ) d=ord(q \mod l) d=ord(qmodl)
令
n
n
n是给定正整数,设
I
(
q
,
n
;
x
)
I(q,n;x)
I(q,n;x) 是
F
q
F_q
Fq上所有的
n
n
n次首一不可约多项式之积,那么
I
(
q
,
n
;
x
)
=
∏
d
∣
n
(
x
q
d
−
x
)
μ
(
n
/
d
)
=
∏
d
∣
n
(
x
q
n
/
d
−
x
)
μ
(
d
)
I(q,n;x) = \prod_{d \mid n} (x^{q^d}-x)^{\mu(n/d)} = \prod_{d \mid n} (x^{q^{n/d}}-x)^{\mu(d)}
I(q,n;x)=d∣n∏(xqd−x)μ(n/d)=d∣n∏(xqn/d−x)μ(d)
设
N
q
(
n
)
N_q(n)
Nq(n) 是
F
q
F_q
Fq上所有的
n
n
n次首一不可约多项式的个数,那么
N
q
(
n
)
=
1
n
∑
d
∣
n
μ
(
n
d
)
q
d
=
1
n
∑
d
∣
n
μ
(
d
)
q
n
d
N_q(n) = \frac{1}{n} \sum_{d|n} \mu(\frac{n}{d})q^d = \frac{1}{n} \sum_{d|n} \mu(d)q^\frac{n}{d}
Nq(n)=n1d∣n∑μ(dn)qd=n1d∣n∑μ(d)qdn
令
n
n
n是给定正整数,考虑所有的
F
q
F_q
Fq上的
m
m
m阶分圆多项式
Q
m
(
x
)
Q_m(x)
Qm(x),使得
n
n
n是
q
m
o
d
m
q \mod m
qmodm的指数,那么
I
(
q
,
n
;
x
)
=
∏
m
Q
m
(
x
)
I(q,n;x) = \prod_m Q_m(x)
I(q,n;x)=m∏Qm(x)
因此,为了找出有限域 F q F_q Fq上全部的 n n n次不可约多项式:
- 首先找出所有的满足 n = o r d ( q m o d m ) n=ord(q \mod m) n=ord(qmodm)的 m m m,
- 然后计算对应的分圆多项式 Q m ( x ) Q_m(x) Qm(x),
- 做素分解,这些 Q m ( x ) Q_m(x) Qm(x)的不可约因式,就是全部的 n n n次不可约多项式。