有限域上的所有不可约多项式

之前写过如何判断多项式是否不可约,已知分圆多项式都是有理数域上的不可约的整系数多项式。根据剩余类判别法,存在一些素域,使得分圆多项式在其上也是不可约的。那么,给定一个有限域,哪些分圆多项式是不可约的?进一步的,所有的不可约多项式是哪些?

莫比乌斯函数

莫比乌斯函数是如下分段函数:
μ ( n ) = { 1 , n = 1 ( − 1 ) k , n = p 1 p 2 ⋯ p k 0 , o t h e r s \mu(n) = \left\{ \begin{aligned} 1, && n&=1\\ (-1)^k, && n&=p_1 p_2 \cdots p_k\\ 0, && o&thers \end{aligned} \right. μ(n)= 1,(1)k,0,nno=1=p1p2pkthers

  1. 它是一个积性函数: ∀ gcd ⁡ ( a , b ) = 1 , μ ( a b ) = μ ( a ) μ ( b ) \forall\gcd(a,b)=1, \mu(ab)=\mu(a)\mu(b) gcd(a,b)=1,μ(ab)=μ(a)μ(b)

  2. 对于 n ∈ Z + n \in \mathbb Z^+ nZ+,它满足
    ∑ d ∣ n μ ( d ) = 1  if n=1 else 0 \sum_{d\mid n} \mu(d) = 1 \text{ if n=1 else 0} dnμ(d)=1 if n=1 else 0

  3. 对于 n ∈ Z + n \in \mathbb Z^+ nZ+,它满足
    ∑ d ∣ n μ ( d ) d = ϕ ( n ) n \sum_{d\mid n} \frac{\mu(d)}{d} = \frac{\phi(n)}{n} dndμ(d)=nϕ(n)

    与欧拉函数联系起来了

有限域上分圆多项式的性质

有限域 F q F_q Fq,特征 p p p,令 ( n , p ) = 1 (n,p)=1 (n,p)=1,那么 F q F_q Fq上的 n n n阶分圆多项式,都可表示为:
Q n ( x ) = ∏ d ∣ n ( x d − 1 ) μ ( n / d ) = ∏ d ∣ n ( x n / d − 1 ) μ ( d ) Q_n(x) = \prod_{d \mid n} (x^d - 1)^{\mu(n/d)} = \prod_{d \mid n} (x^{n/d} - 1)^{\mu(d)} Qn(x)=dn(xd1)μ(n/d)=dn(xn/d1)μ(d)

为了计算莫比乌斯函数 μ ( d ) \mu(d) μ(d),可以做整数的素分解(例如筛法)。一般地 n n n 是多项式复杂度的,因此用最简单的筛法效率也还行。

r r r是素数, m m m是任意正整数,那么

  1. r ∤ m r \nmid m rm,那么
    Q m r ( x ) = Q m ( x r ) Q m ( x ) Q_{mr}(x) = \frac{Q_m(x^r)}{Q_m(x)} Qmr(x)=Qm(x)Qm(xr)

  2. r ∣ m r \mid m rm,那么
    Q m r ( x ) = Q m ( x r ) Q_{mr}(x) = Q_m(x^r) Qmr(x)=Qm(xr)

  3. k k k是正整数,那么
    Q m r k ( x ) = Q m r ( x r k − 1 ) Q_{mr^k}(x) = Q_{mr}(x^{r^{k-1}}) Qmrk(x)=Qmr(xrk1)

  4. n ≥ 3 n \ge 3 n3,且 n n n是奇数,那么
    Q 2 n ( x ) = Q n ( − x ) Q_{2n}(x) = Q_n(-x) Q2n(x)=Qn(x)

有限域上分圆多项式的不可约性

F q F_q Fq是有限域,整数 n > 1 n>1 n>1 ( n , q ) = 1 (n,q)=1 (n,q)=1,那么 Q n Q_n Qn可以在 F q [ x ] F_q[x] Fq[x]上分解为 ϕ ( n ) / d \phi(n)/d ϕ(n)/d 个不同的 d d d 次首一不可约多项式之积,其中 d d d q m o d    n q \mod n qmodn 的指数,即
Q n ( x ) = ∏ i = 1 ϕ ( n ) / d p i ( x ) Q_n(x) = \prod_{i=1}^{\phi(n)/d} p_i(x) Qn(x)=i=1ϕ(n)/dpi(x)

其中 p i ( x ) p_i(x) pi(x)不可约, deg ⁡ ( p i ) = d = o r d ( q m o d    n ) \deg(p_i)=d=ord(q \mod n) deg(pi)=d=ord(qmodn) deg ⁡ ( Q n ) = ϕ ( n ) \deg(Q_n)=\phi(n) deg(Qn)=ϕ(n)

因此, Q n Q_n Qn F q F_q Fq 上不可约    ⟺    \iff q m o d    n q \mod n qmodn 的指数为 ϕ ( n ) \phi(n) ϕ(n) q q q Z n ∗ \mathbb Z_n^* Zn的原根)

根据数论知识, Z n ∗ \mathbb Z_n^* Zn 中存在原根    ⟺    \iff n = 2 , 4 , p r , 2 p r n = 2,4,p^r,2p^r n=2,4,pr,2pr,其中 p p p是奇素数, r r r是正整数(已经忘干净了 (;′⌒`))

因此, ( n , q ) = 1 (n,q)=1 (n,q)=1的有限域 F q F_q Fq Q n Q_n Qn 不可约,那么恰有: n = 2 , 4 , p r , 2 p r n = 2,4,p^r,2p^r n=2,4,pr,2pr。于是,任意有限域上,可约的分圆多项式有无限个,同时不可约的分圆多项式也有无限个

如果 a ≢ 0 m o d    p a \not \equiv 0 \mod p a0modp,其中 p p p是奇素数,那么 Legendre 符号为:
( a p ) ≡ a p − 1 2 m o d    p \left({a \over p}\right) \equiv a^{\frac{p-1}{2}} \mod p (pa)a2p1modp

当素数形如 p = 8 m ± 1 p=8m \pm 1 p=8m±1,那么 2 2 2是二次剩余。嘚嘚嘚,推出:如果 Q n Q_n Qn Z 2 \mathbb Z_2 Z2上不可约,要么 n ≡ ± 3 m o d    8 n\equiv \pm 3 \mod 8 n±3mod8是素数,或者 n = p 2 n=p^2 n=p2其中 p ≡ ± 3 m o d    8 p\equiv \pm 3 \mod 8 p±3mod8是素数。反之不成立。

有限域上所有的不可约多项式

有限域 F q [ x ] F_q[x] Fq[x]中,所有的次数整除 n n n的首一不可约多项式之积:
x q n − x = ∏ d ∣ n ∏ deg ⁡ ( p i ) = d p i ( x ) x^{q^n}-x = \prod_{d \mid n} \prod_{\deg(p_i)=d} p_i(x) xqnx=dndeg(pi)=dpi(x)

也就是说,扩域 F q n F_{q^n} Fqn中的所有元素,恰是这些不可约多项式在代数闭包中的根。任意一个 deg ⁡ ( p i ) = d \deg(p_i)=d deg(pi)=d的不可约多项式,它有一个根 α ∈ F q d ≤ F q n \alpha \in F_{q^d} \le F_{q^n} αFqdFqn,那么所有的不同的根为共轭集合 { α , α q , ⋯   , α q d − 1 } ∈ F q d \{\alpha,\alpha^q,\cdots,\alpha^{q^{d-1}}\} \in F_{q^d} {α,αq,,αqd1}Fqd,且它们的乘法阶都是 l l l,它使得 d d d是满足 q d ≡ 1 m o d    l q^d \equiv 1 \mod l qd1modl的最小正整数,即 d = o r d ( q m o d    l ) d=ord(q \mod l) d=ord(qmodl)

n n n是给定正整数,设 I ( q , n ; x ) I(q,n;x) I(q,n;x) F q F_q Fq上所有的 n n n次首一不可约多项式之积,那么
I ( q , n ; x ) = ∏ d ∣ n ( x q d − x ) μ ( n / d ) = ∏ d ∣ n ( x q n / d − x ) μ ( d ) I(q,n;x) = \prod_{d \mid n} (x^{q^d}-x)^{\mu(n/d)} = \prod_{d \mid n} (x^{q^{n/d}}-x)^{\mu(d)} I(q,n;x)=dn(xqdx)μ(n/d)=dn(xqn/dx)μ(d)

N q ( n ) N_q(n) Nq(n) F q F_q Fq上所有的 n n n次首一不可约多项式的个数,那么
N q ( n ) = 1 n ∑ d ∣ n μ ( n d ) q d = 1 n ∑ d ∣ n μ ( d ) q n d N_q(n) = \frac{1}{n} \sum_{d|n} \mu(\frac{n}{d})q^d = \frac{1}{n} \sum_{d|n} \mu(d)q^\frac{n}{d} Nq(n)=n1dnμ(dn)qd=n1dnμ(d)qdn

n n n是给定正整数,考虑所有的 F q F_q Fq上的 m m m阶分圆多项式 Q m ( x ) Q_m(x) Qm(x),使得 n n n q m o d    m q \mod m qmodm的指数,那么
I ( q , n ; x ) = ∏ m Q m ( x ) I(q,n;x) = \prod_m Q_m(x) I(q,n;x)=mQm(x)

因此,为了找出有限域 F q F_q Fq上全部的 n n n次不可约多项式:

  1. 首先找出所有的满足 n = o r d ( q m o d    m ) n=ord(q \mod m) n=ord(qmodm) m m m
  2. 然后计算对应的分圆多项式 Q m ( x ) Q_m(x) Qm(x)
  3. 做素分解,这些 Q m ( x ) Q_m(x) Qm(x)的不可约因式,就是全部的 n n n次不可约多项式。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值