本原多项式 M序列和AES不可约多项式

密码学本原多项式

1.本原多项式是近世代数中的一个概念,是唯一分解整环上满足所有系数的最大公因数为1的多项式。本原多项式不等于零,与本原多项式相伴的多项式仍为本原多项式
2.高斯引理:本原多项式的乘积还是本原多项式。


如图:

代数式系数对应的0 1 字串,满足,用8进制变为对应的十进制,若为素数,则为本原多项式此处有错误:不能用素数判断
以下列出几个本原多项式。

此图有错误:
我也是被人误导了,下图中有些数据有错误,还有不应该用是否为素数来判断多项式为本原多项式。

在这里插入图片描述

正确的图(以书为主):
在这里插入图片描述


AES密码学不可约多项式:

不可约多项式和本原多项式不同。

m(x)=(x8+x4+x3+x+1)这个是密码学AES算法查S盒时用到的不可约多项式

公式:y=Ax-1+b
在这里插入图片描述

这里给出S盒中的一部分
在这里插入图片描述

若给出x = 00001001,想要得到y?
方法一:
x转化成为16进制数字为x=09
查表可以得到x对应的y=01

方法二:
将00001001写为多项式为x3+1
求出(x3+1)-1mod(m(x))的逆元后
即为x6+x3+x2+x+1
转化为2进制即为01001111
在这里插入图片描述
高位在下,低位在上,利用公式得出00000001,即y=01


谢谢!

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值