Hybrid Homomorphic Encryption:SE + HE

参考文献:

  1. [NLV11] Naehrig M, Lauter K, Vaikuntanathan V. Can homomorphic encryption be practical?[C]//Proceedings of the 3rd ACM workshop on Cloud computing security workshop. 2011: 113-124.
  2. [MJS+16] Méaux P, Journault A, Standaert F X, et al. Towards stream ciphers for efficient FHE with low-noise ciphertexts[C]//Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I 35. Springer Berlin Heidelberg, 2016: 311-343.
  3. [CDK+21] Chen H, Dai W, Kim M, et al. Efficient homomorphic conversion between (ring) LWE ciphertexts[C]//International Conference on Applied Cryptography and Network Security. Cham: Springer International Publishing, 2021: 460-479.
  4. [CHK+21] Cho J, Ha J, Kim S, et al. Transciphering framework for approximate homomorphic encryption[C]//International Conference on the Theory and Application of Cryptology and Information Security. Cham: Springer International Publishing, 2021: 640-669.
  5. [DGG+21] Dobraunig C, Grassi L, Guinet A, et al. Ciminion: symmetric encryption based on toffoli-gates over large finite fields[C]//Annual International Conference on the Theory and Applications of Cryptographic Techniques. Cham: Springer International Publishing, 2021: 3-34.
  6. [HKL+22] Ha J, Kim S, Lee B H, et al. Rubato: Noisy ciphers for approximate homomorphic encryption[C]//Annual International Conference on the Theory and Applications of Cryptographic Techniques. Cham: Springer International Publishing, 2022: 581-610.
  7. [DGH+23] Dobraunig C, Grassi L, Helminger L, et al. Pasta: A Case for Hybrid Homomorphic Encryption[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023, 2023(3): 30-73.

HHE

[NLV11] 实现了 BV 算法,研究同态加密的实用性。为了解决 HE 密文规模太大的问题,他们提出了 Hybrid Homomorphic Encryption / Transciphering Framework,组合使用对称加密(SE)和同态加密(HE)。

对于 Client-Server Model,如图所示:

在这里插入图片描述

HHE 关注的场景:

  • 2PC 场景(client + server),client 的计算/通信能力受限(云计算),或者 server 具有私有函数(机器学习
    1. client 生成 SE 密钥,以及 HE 公私钥,发布公钥
    2. client 使用 SE 加密数据,并使用 HE 加密 SE 的密钥,发送两者给 server
    3. server 先同态解密 SE 密文,然后同态计算,最后发送 HE 密文给 client
    4. client 解密 HE 密文,获得计算结果
  • MPC 场景(data providers + key holders + evaluators),可用于数据的秘密收集(物联网
    1. key holders(分布式)生成 HE 公私钥,发布公钥
    2. data providers 生成各自的 SE 密钥,使用 SE 加密数据,并使用 HE 加密 SE 的密钥,发送两者给 evaluators
    3. evaluators 先同态解密 SE 密文,然后同态计算,最后发送 HE 密文给 key holders
    4. key holders(分布式)解密 HE 密文,获得计算结果

LWE-Native Encryption

[CDK+21] 使用 Galois 自同构实现了 RLWE 密文的相位某些系数的消除,于是可以把 LWE 密文嵌入到 RLWE 密文,然后使用 FFT-style 算法实现了多个 LWE 密文的打包(LWEs-to-RLWE

基于此,[CDK+21] 建议在云计算场景中,使用对称版本的 Regev 加密方案。由于 LWE-based 都是 FHE 友好的,可以较为自然地在 RLWE 密文下同态解密(只需计算线性部分,不必纠错)。

  1. client 使用 PRF 生成各个 LWE 密文的随机带, a j = P R F ( s e e d , j ) ∈ Z q N a_j = PRF(seed, j) \in \mathbb Z_q^N aj=PRF(seed,j)ZqN
  2. client 将消息 m j ∈ Z t m_j \in \mathbb Z_t mjZt 随机编码为 μ j ∈ Z q \mu_j \in \mathbb Z_q μjZq(携带高斯噪声),计算 b j = ⟨ a j , s ⟩ + μ j b_j = \langle a_j, s\rangle + \mu_j bj=aj,s+μj
  3. client 发送的 SE 密文形如 ( s e e d , b 0 , b 1 , ⋯   ) (seed, b_0, b_1, \cdots) (seed,b0,b1,),具有较低的 ciphertext expansion factor(但是 b j b_j bj 带噪,密文扩张总是不可避免),具体为 log ⁡ q log ⁡ t + ∣ s e e d ∣ \frac{\log q}{\log t} + |seed| logtlogq+seed
  4. server 同态线性解密,获得 μ j \mu_j μj 带噪的消息编码,然后直接同态运算(需要 Regev 本身就具有足够的 Levels,也就是 log ⁡ q ≫ log ⁡ t \log q \gg \log t logqlogt
  5. server 将得到的 RLWE 密文降低到最低的 Level,返回给 client

Filter Permutator & FLIP

[MJS+16] 考虑了两种对称加密,

  • 分组密码(Block ciphers):各个消息分组上,解密电路的深度是固定的,但是由于使用了大轮数迭代,乘法深度很高。
  • 流密码(Stream Ciphers):初始的消息分组,解密电路的深度很小,但随着密钥流的生成,乘法深度会越来越高。

综合考虑两者的优缺点,[MJS+16] 组合它们设计了新的流密码,即满足分组密码的常数深度,又满足流密码的较浅深度

Filter Permutator

首先,他们提出了一个新的流密码结构,被称为 Filter Permutator Construction,它包含三部分:密钥寄存器、随机置换生成器(randomized linear layers)、滤波器(简单的非线性运算)。如图所示,

在这里插入图片描述

密钥流的每一个比特都是根据 F ∘ P i ( K ) F \circ P_i(K) FPi(K) 计算出来的,电路深度是常数的,并且没有大轮数迭代

FLIP

接着 [MJS+16] 构造了一族 Filter Permutators,称之为 FLIP。这个流密码是工作在布尔值 Z 2 \mathbb Z_2 Z2 上的(如果 FHE 的自然明文空间是 Z t , t ≥ 3 \mathbb Z_t, t\ge 3 Zt,t3,那么布尔电路的乘法深度会很高)。

首先,他们定义了布尔函数的直和,并证明了它可以将两个函数的 Non Linearity, Resiliency, Algebraic Immunity, Fast Algebraic Immunity 等安全属性组合并增强(细节请看原文)。

在这里插入图片描述

然后定义了三种简单的布尔函数,并给出了它们的安全属性(略):

在这里插入图片描述

[MJS+16] 使用 Filter Permutator Construction 去构造流密码,使用的滤波器 F : Z 2 n 1 + n 2 + n 3 → Z 2 F: \mathbb Z_2^{n_1+n_2+n_3} \to \mathbb Z_2 F:Z2n1+n2+n3Z2 是上述三种布尔函数的直和,令 n 1 , n 2 , n , k , n 3 = n k ( k + 1 ) 2 n_1,n_2,n,k,n_3 = \frac{nk(k+1)}{2} n1,n2,n,k,n3=2nk(k+1) 是合适的整数,
F ( x 0 , ⋯   , x n 1 + n 2 + n 3 − 1 ) = L n 1 ⊕ Q n 2 / 2 ⊕ ⨁ i = 1 n T k F(x_0,\cdots,x_{n_1+n_2+n_3-1}) = L_{n_1} \oplus Q_{n_2/2} \oplus \bigoplus_{i=1}^{n} T_k F(x0,,xn

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值