背景
大数据时代已经到来,企业迫切希望从已经积累的数据中分析出有价值的东西,而用户行为的分析尤为重要。利用大数据来分析用户的行为与消费习惯,可以预测商品的发展的趋势,提高产品质量,同时提高用户满意度。本课程是基于大型电商公司的真实用户画像中提练出的精华内容,旨在培养学员了解用户画像的内容,掌握构建用户画像的方法。
用户画像的概念
用户画像:也叫用户信息标签化、客户标签;根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。从电商的角度看,根据你在电商网站上所填的信息和你的行为,可以用一些标签把你描绘出来,描述你的标签就是用户画像。构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。
目标分析
用户画像的目标是通过分析用户行为,最终为每个用户打上标签,以及该标签的权重。
标签:表现了内容,用户对该内容有兴趣、偏好、需求等等。
权重:表现了指数,用户的兴趣、偏好指数,也可能表现用户的需求度,可以简单的理解为可信度,概率。
构建电商用户画像的重大意义
1、精准营销,分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销;
2、用户统计,比如中国大学购买书籍人数 TOP10;
3、数据挖掘,构建智能推荐系统,利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌,利用聚类算法分析,喜欢红酒的人年龄段分布情况;
4、进行效果评估,完善产品运营,提升服务质量,其实这也就相当于市场调研、用户调研,迅速下定位服务群体,提供高水平的服务;
5、对服务或产品进行私人定制,即个性化的服务某类群体甚至每一位用户(个人认为这是目前的发展趋势,未来的消费主流)
6、业务经营分析以及竞争分析,影响企业发展战略。
如何构建电商用户画像
构建一个用户画像,包括数据源端数据收集、数据预处理、行为建模、构建用户画像
有些标签是可以直接获取到的,有些标签需要通过数据挖掘分析到!
用户数据分为2类:
动态信息数据、静态信息数据
静态信息数据来源:
用户填写的个人资料,或者由此通过一定的算法,计算出来的数据如果有不确定的,可以建立模型来判断,比如用户的性别注册没有填写,可以建立模型,根据用户的行为来判断用户性别是什么,或者它的概率
动态信息数据来源:
用户行为产生的数据:注册、游览、点击、购买、签收、评价、收藏等等。
用户比较重要的行为数据:游览商品,收藏商品、加入购物车、关注商品
根据这些行为特性可以计算出:用户注册时间、首单时间、潮妈族、纠结商品、最大消费、订单数量、退货数量、败家指数、品牌偏好等等。
主要数据来源:用户表、用户调查表、孕妇模型表、马甲模型表。
用户表:记录用户最基本的属性特性。
用户调查表:补充用户的其他基本信息。
用户所填写的基本信息:用户ID、用户名、密码、性别、手机号、邮箱、年龄、户籍省份、身份证编号、注册时间、收货地址等
用户所填信息计算得到的指标:
生日、星座、城市等级、手机前几位、手机运营商、邮件运营商
用户调查表得到:学历、收入、职业、婚姻、是否有小孩、是否有车有房、使用手机品牌。
根据算法得到:
身高、体重、性别模型、孩子性别概率、潜在汽车用户概率、是否孕妇、孩子年龄概率、手机品牌、更换手机频率、是否有小孩,是否有车,使用手机档次,疑似马甲标准、疑似马甲账号数、用户忠诚度、用户购物类型。
模型算法---性别模型
用户自己也填写了性别,但仍然要用算法算一次性别
用户性别 | 1男 0女 -1未识别 | 1、商品性别得分 2、用户购买上述商品计算用户性别等得分 3、最优化算法训练阀值,根据阀值判断 |
孩子性别 | 0 仅有男孩 1仅有女孩 2男女都有 3无法识别 | 1、选择男孩女孩商品 2、确定用户购买商品的男女性别比例 3、训练阀值,判断孩子性别,同用户性别类似 |
性别验证方法
随机抽样几千条数据让客户打电话确认。
与用户自己填的性别做对比,确认百分比
用户是否有车 | 1有 0 没有 -1 未识别 | 根据用户购买车相关产品 判断用户是否有车 |
潜在汽车用户 | 1有 0 没有 -1 未识别 | 用户游览或者搜索汽车 用户数据判断 |
模型算法---用户忠诚度模型
忠诚度越高的用户越多,对网站的发展越有利
用户忠诚度 | 1忠诚型用户 2偶尔型用户 3投资型用户 4游览型用户 -1未识别 | 总体规则是判断+聚类算法 1、游览用户型:只游览不购买的 2、购买天数大于一定天数的为忠诚用户 3、购买天数小于一定天数,大部分是有优惠才购买的 4、其他类型根据购买天数,购买最后一次距今时间,购买金额进行聚类 |
模型算法---用户身高尺码模型
男性用户身高尺码 | xxx-xxx身高段,-1未识别 | 用户购买服装鞋帽等用户判断 |
男性身材 | 1偏瘦、2标准、3偏胖4肥胖、-1未识别 | |
女性用户身高尺码 | xxx-xxx身高段,-1未识别 | |
女性身材 | 1偏瘦、2标准、3偏胖4肥胖、-1未识别 |
模型算法---用户马甲标志模型
马甲是指一个用户注册多个账号
多次访问地址相同的用户账号是同一个人所有
同一台手机登陆多次的用户是同一个人所有
收货手机号相同的账号同一个人所有
模型算法---手机相关标签模型
对于手机营销参考意义比较大
使用手机品牌: 最常用手机直接得到
使用手机品牌档次:根据档次维表
使用多少种不同的手机:手机登陆情况
更换手机频率(月份):按时间段看手机登陆情况
欢迎关注我的个人公众号:破晓的不止黎明