《信号与系统》笔记 第一章


1.1 信号与系统

  1. 信号是消息的表现形式和载体,消息是信号的具体内容。
  2. 信号是反映信息的各种物理量,是系统直接进行加工、变换以实现通信的对象。
  3. 系统(system):是指若干相互关联的事物组合而成具有特定功能的整体。

1.2 信号的描述、分类和典型示例

  1. 信号的描述: 数学描述、波形描述。
  2. 信号的分类:
    1)确定信号与随机信号
    2)周期信号与非周期信号
    3)连续时间信号与离散时间信号
    4)一维信号与多维信号
    5)能量信号与功率信号
    6)因果信号等等
  3. 典型的连续信号
  • 指数信号: f ( t ) = K e a t , τ = 1 ∣ a ∣ , a ∈ R \color{blue} f(t) = Ke^{at} ,\tau = {1 \over {\left| a \right|}},a \in R f(t)=Keatτ=a1aR 。(对时间的微分、积分仍是指数。)
    1. a>0时,信号将随时间而增长;a<0时,信号将随时间而衰减;a=0时,信号不随时间而变化,为直流信号。
    2. 是指数信号的时间常数,越大,指数信号增长或衰减的速率越慢。
  • 正弦信号: f ( t ) = K sin ⁡ ( ω t + θ ) \color{blue} f(t)=K\sin(\omega t+\theta) f(t)=Ksin(ωt+θ)(对时间的微、积分仍是同频率正弦。)
  • 复指数信号: f ( t ) = K e s t = K e ( σ + j ω ) t , K e ( σ + j ω ) t = K e σ t cos ⁡ ( ω t ) + j K e σ t sin ⁡ ( ω t ) \color{blue} f(t)=Ke^{st} =Ke^{(\sigma +j\omega)t}, Ke^{(\sigma +j\omega)t}=Ke^{\sigma t}\cos(\omega t)+jKe^{\sigma t}\sin(\omega t) f(t)=Kest=Ke(σ+jω)tKe(σ+jω)t=Keσtcos(ωt)+jKeσtsin(ωt)
    1. 实际不存在,但可以用于描述各种信号。
    2. σ>0时,增幅振荡正、余弦信号;σ<0时,衰减振荡正、余弦信;σ=0时等振幅振荡正、余弦信号;ω=0时,实指数信号;σ=0且ω=0时,直流信号。
  • 抽样函数: S a ( t ) = sin ⁡ t t \color{blue} Sa(t)=\frac{\sin t}{t} Sa(t)=tsint
    1. 抽样函数具有以下性质: ∫ − ∞ ∞ S a ( t ) d t = π , ∫ 0 ∞ S a ( t ) d t = π 2 , S a ( t ) = 0 , ( t = ± π , ± 2 π , ⋯   ) \color{blue}\int_{ - \infty }^\infty {Sa(t)dt = \pi ,} \int_0^\infty {Sa(t)dt = {\pi \over 2}},Sa(t) = 0,(t = \pm \pi , \pm 2\pi , \cdots ) Sa(t)dt=π,0Sa(t)dt=2πSa(t)=0,(t=±π,±2π,)
  • 钟形信号(高斯函数): f ( t ) = E e − ( t π ) 2 \color{blue} f(t)=Ee^{-(\frac{t}{\pi})^2} f(t)=Ee(πt)2

1.3 信号的运算

  1. 位移、反褶、与尺度
    f ( t ) → f ( t + t 0 ) f(t) \to f(t + {t_0}) f(t)f(t+t0) ,若 t 0 > 0 {t_0} > 0 t0>0,则 f ( t ) f(t) f(t)的波形沿时间轴向左移动,反之则向右移动。
    f ( t ) → f ( − t ) f(t) \to f( - t) f(t)f(t) ,把 f ( t ) f(t) f(t)的波形以 t = 0 t=0 t=0为轴反褶过来,
    f ( t ) → f ( a t ) f(t) \to f(at) f(t)f(at) ,( a a a为正实系数),若 a > 0 a>0 a>0,则 f ( t ) f(t) f(t)的波形沿时间轴被压缩,反之被扩展。
  2. 微分和积分
    1)信号 f ( t ) f(t) f(t)的微分运算指 f ( t ) f(t) f(t) t t t取导数,即: f ′ ( t ) = d d t f ( t ) f'(t) = {d \over {dt}}f(t) f(t)=dtdf(t),信号经过微分运算后突出显示了它的变化部分,起到了锐化的作用。
    2)信号f(t)的积分运算指f(t)在(-∞,t)区间内的定积分,表达式为: ∫ − ∞ t f ( τ ) d τ \int_{ - \infty }^t {f(\tau )} d\tau tf(τ)dτ,信号经过积分运算后,使得信号突出变化部分变得平滑了,起到了模糊的作用,利用积分可以削弱信号中噪声的影响。
  3. 两信号相加或相乘
    涉及到通信系统的调制解调等过程,在第五章展开。

1.4 阶跃信号与冲激信号

  1. **单位斜变信号 **
  • 变化率是1,表达式为: f ( t ) = { 0 ( t < 0 ) t ( t ≥ 0 ) \color {blue} f(t)=\begin{cases}0 & (t<0) \\t & (t\ge0) \end{cases} f(t)={0t(t<0)(t0)
  • 函数图形为:

单位斜变信号

  1. 单位阶跃信号 u ( t ) u(t) u(t)
  • 表达式: u ( t ) = { 0 ( t < 0 ) 1 ( t > 0 ) \color{blue}u(t)=\begin{cases}0 & (t<0) \\1 & (t>0) \end{cases} u(t)={01(t<0)(t>0),在跳变点 t = 0 t=0 t=0,函数值未定义,或者规定t=0处规定函数值 u ( 0 ) = 1 2 u(0)=\dfrac{1}{2} u(0)=21
  • 函数图像为:

单位阶跃信号

  • 特性:可以方便的表示某些信号,用阶跃函数表示信号的作用区间,积分计算;(选通特性)
  1. 单位冲激信号 δ ( t ) \delta (t) δ(t)
  • 单位冲激信号是一个奇异函数,它是一个对强度极大,作用时间极短的一种物理量的理想化模型。
  • 定义方法:可以由矩形脉冲演变成冲激函数,如:

矩形脉冲演变冲激函数
δ ( t ) = lim ⁡ τ → ∞ 1 τ [ u ( t + τ 2 ) − u ( t − τ 2 ) ] \color{blue}\delta (t) = \mathop {\lim }\limits_{\tau \to \infty } {1 \over \tau }[u(t + {\tau \over 2}) - u(t - {\tau \over 2})] δ(t)=τlimτ1[u(t+2τ)u(t2τ)]
特点:在变化过程中宽为 τ \tau τ,高为 1 τ 1 \over \tau τ1,其中矩形脉冲面积 τ 1 τ = 1 \tau {1 \over \tau } = 1 ττ1=1不变,而使脉冲宽 τ \tau τ趋近于0时,脉冲幅度 1 τ 1 \over \tau τ1必趋近于无限大,这种机下情况称之为单位冲激函数。

  • 冲激函数性质:

    抽样性: ∫ − ∞ ∞ f ( t ) δ ( t ) d t = ∫ − ∞ ∞ f ( 0 ) δ ( t ) d t = f ( 0 ) ∫ − ∞ ∞ δ ( t ) d t = f ( 0 ) \color{blue}\int_{{\rm{ - }}\infty }^\infty {f(t)\delta (t)dt = } \int_{{\rm{ - }}\infty }^\infty {f(0)\delta (t)dt = } f(0)\int_{{\rm{ - }}\infty }^\infty {\delta (t)dt = } f(0) f(t)δ(t)dt=f(0)δ(t)dt=f(0)δ(t)dt=f(0) ∫ − ∞ ∞ f ( t ) δ ( t − t 0 ) d t = f ( t 0 ) \int_{ - \infty }^\infty {f(t)\delta (t - {t_0})} dt = f({t_0}) f(t)δ(tt0)dt=f(t0)

    奇偶性: δ ( − τ ) = δ ( τ ) \color{blue}\delta ( - \tau ) = \delta (\tau ) δ(τ)=δ(τ)

    尺度运算: δ ( a t ) = 1 ∣ a ∣ δ ( t ) \color{blue}\delta (at) = {1 \over {\left| a \right|}}\delta (t) δ(at)=a1δ(t)

    微积分性质: δ ( t ) = d d t u ( t ) , ∫ − ∞ t δ ( τ ) d τ = u ( t ) \color{blue}\delta (t) = {d \over {dt}}u(t),\int_{ - \infty }^t {\delta (\tau )d\tau = u(t)} δ(t)=dtdu(t),tδ(τ)dτ=u(t)

    冲激偶: ∫ − ∞ ∞ δ ′ ( t ) f ( t ) d t = − f ′ ( 0 ) \color{blue}\int_{ - \infty }^\infty {\delta '(t)f(t)dt = - f'(0)} δ(t)f(t)dt=f(0)

    ∫ − ∞ ∞ δ ′ ( t ) d t = 0 \color{blue}\int_{ - \infty }^\infty {\delta '(t)dt = 0} δ(t)dt=0

    卷积性质: f ( t ) ∗ δ ( t ) = f ( t ) \color{blue}f(t) * \delta (t) = f(t) f(t)δ(t)=f(t)

1.5 信号的分解

  • 直流分量+交流分量: f ( t ) = f D ( t ) + f A ( t ) \color{blue}f(t) = {f_D}(t) + {f_A}(t) f(t)=fD(t)+fA(t)

  • 偶分量+奇分量: f ( t ) = 1 2 [ f ( t ) + f ( − t ) ] + 1 2 [ f ( t ) − f ( − t ) ] \color{blue}f(t) = {1 \over 2}[f(t) + f( - t)] + {1 \over 2}[f(t) - f( - t)] f(t)=21[f(t)+f(t)]+21[f(t)f(t)]

    其中偶分量: f e ( t ) = 1 2 [ f ( t ) + f ( − t ) ] \color{blue}{f_e}(t) = {1 \over 2}[f(t) + f( - t)] fe(t)=21[f(t)+f(t)]

    ​ 奇分量: f o ( t ) = 1 2 [ f ( t ) − f ( − t ) ] \color{blue}{f_o}(t) = {1 \over 2}[f(t) - f( - t)] fo(t)=21[f(t)f(t)]

  • 脉冲分量的叠加

    冲激信号的叠加: f ( t ) = ∫ − ∞ ∞ f ( t 1 ) δ ( t − t 1 ) d t 1 \color{blue}f(t) = \int_{ - \infty }^\infty {f({t_1})\delta (t - {t_1})d{t_1}} f(t)=f(t1)δ(tt1)dt1

    阶跃信号的叠加: f ( t ) = f ( 0 ) u ( t ) + ∫ 0 ∞ d f ( t 1 ) d t 1 u ( t − t 1 ) d t 1 \color{blue}f(t) = f(0)u(t) + \int_0^\infty {{{df({t_1})} \over {d{t_1}}}u(t - {t_1})d{t_1}} f(t)=f(0)u(t)+0dt1df(t1)u(tt1)dt1

  • 实部分量+虚部分量:瞬时值为复数的信号f(t)可分解为 f ( t ) = f r ( t ) + j f i ( t ) \color{blue}f(t) = {f_r}(t) + j{f_i}(t) f(t)=fr(t)+jfi(t)

  • 正交函数分量的叠加:如傅里叶级数

1.6 系统模型的分解

  1. **系统:**是由若干相互作用、相互依赖的事物组合而成的具有特定功能的整体

  2. **系统的分类:**连续时间系统和离散时间系统;线性系统和非线性系统;时变系统和时不变系统;集总参数系统和分布参数系统;可逆系统和不可逆系统;动态系统和即时系统;

  3. 描述连续动态系统的数学模型是微分方程,描述离散动态系统的数学模型是差分方程。

  4. 系统分析研究的主要问题:

    给定的具体系统,求出它对给定激励的响应;也可以说,系统分析就是建立表示系统的数学方程并求出解答。

1.7 线性时不变系统

  1. LTI(线性时不变系统)的基本特性:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DzBtTzAv-1612169705561)(C:\Users\绿色小鱼\AppData\Roaming\Typora\typora-user-images\image-20210201161338879.png)]

  • **线性性质(叠加性和均匀性):**线性指叠加性和齐次性,即若 f 1 ( t ) → y 1 ( t ) \color{blue}{f_1}(t) \to {y_1}(t) f1(t)y1(t) f 2 ( t ) → y 2 ( t ) \color{blue}{f_2}(t) \to {y_2}(t) f2(t)y2(t),则 a 1 f 1 ( t ) + a 2 f 2 ( t ) → a 1 y 1 ( t ) + a 2 y 2 ( t ) \color{blue}{a_1} {f_1}(t) + {a_2} {f_2}(t) \to {a_1}{y_1}(t) + {a_2}{y_2}(t) a1f1(t)+a2f2(t)a1y1(t)+a2y2(t),其中 a 1 , a 2 {a_1},{a_2} a1a2为常数。
  • 时不变特性:若 f ( t ) → y ( t ) \color{blue}f(t) \to y(t) f(t)y(t),则 f ( t − t 0 ) → y ( t − t 0 ) \color{blue}f(t - {t_0}) \to y(t - {t_0}) f(tt0)y(tt0)
  • **因果性:**系统在 t 0 {t_0} t0,时刻的响应只与 t = t 0 t = {t_0} t=t0 t < t 0 t < {t_0} t<t0时刻的输入有关,否则为因果系统。
  • 微分特性:若系统在激励 e ( t ) e(t) e(t)作用下产生响应 r ( t ) r(t) r(t),则当激励为 d e ( t ) d t {{de(t)} \over {dt}} dtde(t)时,响应为 d r ( t ) d t {{dr(t)} \over {dt}} dtdr(t)
  • 确定性:若输入 f ( t ) f(t) f(t)有界,则输入 y ( t ) y(t) y(t)也有界。

1.8 LTI系统的分析方法、本书概貌

  1. LTI系统的描述方法:一是输入-输出描述法、另一个时状态变量描述法。

  2. 求解办法:时间域方法、变换域方法。

    • 时域分析:直接分析时间变量的函数,研究系统的时间响应特性。

    • 频域分析:将信号与系统模型的时间变量函数换成相应的变换域的某种变量函数。

      傅里叶变换(FT):以频率为独立变量,以频域特性为主要研究对象;

      拉普拉斯变化(LT):注重研究极点与零点分析,利用 s s s域或 z z z域的特性解释现象和说明问题。

      Z变换(ZT):同LT变换。

    • 离散的傅里叶变换(DFT)、离散沃尔什变换(DWT)等等。

  3. A A A代表连续(模拟)时间信号与系统、 D D D代表离散(数字)时间信号与系统。

参考文档

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值