剑指 Offer 10. 斐波那契及其变形问题——递归、最简单的动态规划法

原题链接

问题一:原生斐波那契

问题描述

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:

F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1

输入:n = 2
输出:1

示例 2

输入:n = 5
输出:5

提示

0 <= n <= 100


解法一:数组

用数组来存储数列,这是最容易想到的方式

public int fib(int n) {
    // 两种特殊情况
    if(n == 0)  return 0;
    if(n == 1) return 1;
    int[] arr = new int[n + 1];
    arr[0] = 0;
    arr[1] = 1;
    // 递推
    for (int i = 2; i <= n; i++) {
        arr[i] = (arr[i - 1] + arr[i - 2]) % 1000000007;
    }
    return arr[n];
}

解法二:递归,但会超时

递归一行解决,但测试数据过大会超时

public int fib(int n) {
    return n < 2 ? n : (fib(n - 1) + fib(n - 2)) % 1000000007;
}

解法三:递推

用两个变量,a存储前2个,b存储前1个,result存储当前。

再往后面递推,b变成前2个(赋给a),result变成前1个(赋给b)

public int fib(int n) {
    if(n < 2) return n;
    int a = 0, b = 1, result = 0;
    while (n-- >= 2){
        result = (a + b) % 1000000007;
        a = b;
        b = result;
    }
    return result;
}


问题二:青蛙跳阶

原题链接

问题描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1

输入:n = 2
输出:2

示例 2

输入:n = 7
输出:21

示例 3

输入:n = 0
输出:1

提示

0 <= n <= 100


和问题一类似,小有不同,问题二问的是方法数,当n=0时,有一种方法,就是不跳

解法一:递归法——超时,行不通

和问题一类似,小有不同,问题二问的是方法数,当n=0时,有一种方法,就是不跳

public int numWays(int n) {
    if(n == 0) return 1;
    return n <= 2 ? n : (numWays(n - 1) + numWays(n - 2)) % 1000000007;
}

解法二:递推

参考问题一的解法三

解法三:数组(动态规划)

public int numWays(int n) {
    // 不跳是一种方法
    if(n == 0) return 1;
    // 跳一阶有一种方法,跳两阶有两种方法(一步跳两下,或者跳两次一下)
    if(n <= 2) return n;
    // arr[n] 表示跳到第n阶有多少种跳法
    int[] arr = new int[n + 1];
    // 初始化
    arr[0] = 1;
    arr[1] = 1;
    // 从第2阶后,每一阶可看做从上一阶或者上两阶跳上来的
    for (int i = 2; i <= n; i++) {
        arr[i] = arr[i - 1] + arr[i - 2];
    }
    return arr[n];
}

问题一与问题二属于同一类型题目,还有很多类似的题目可以运用斐波那契,可见一个斐波那契数列的重要性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值