问题一:原生斐波那契
问题描述
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1
输入:n = 2
输出:1
示例 2
输入:n = 5
输出:5
提示
0 <= n <= 100
解法一:数组
用数组来存储数列,这是最容易想到的方式
public int fib(int n) {
// 两种特殊情况
if(n == 0) return 0;
if(n == 1) return 1;
int[] arr = new int[n + 1];
arr[0] = 0;
arr[1] = 1;
// 递推
for (int i = 2; i <= n; i++) {
arr[i] = (arr[i - 1] + arr[i - 2]) % 1000000007;
}
return arr[n];
}
解法二:递归,但会超时
递归一行解决,但测试数据过大会超时
public int fib(int n) {
return n < 2 ? n : (fib(n - 1) + fib(n - 2)) % 1000000007;
}
解法三:递推
用两个变量,a存储前2个,b存储前1个,result存储当前。
再往后面递推,b变成前2个(赋给a),result变成前1个(赋给b)
public int fib(int n) {
if(n < 2) return n;
int a = 0, b = 1, result = 0;
while (n-- >= 2){
result = (a + b) % 1000000007;
a = b;
b = result;
}
return result;
}
问题二:青蛙跳阶
问题描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1
输入:n = 2
输出:2
示例 2
输入:n = 7
输出:21
示例 3
输入:n = 0
输出:1
提示
0 <= n <= 100
和问题一类似,小有不同,问题二问的是方法数,当n=0时,有一种方法,就是不跳
解法一:递归法——超时,行不通
和问题一类似,小有不同,问题二问的是方法数,当n=0时,有一种方法,就是不跳
public int numWays(int n) {
if(n == 0) return 1;
return n <= 2 ? n : (numWays(n - 1) + numWays(n - 2)) % 1000000007;
}
解法二:递推
参考问题一的解法三
解法三:数组(动态规划)
public int numWays(int n) {
// 不跳是一种方法
if(n == 0) return 1;
// 跳一阶有一种方法,跳两阶有两种方法(一步跳两下,或者跳两次一下)
if(n <= 2) return n;
// arr[n] 表示跳到第n阶有多少种跳法
int[] arr = new int[n + 1];
// 初始化
arr[0] = 1;
arr[1] = 1;
// 从第2阶后,每一阶可看做从上一阶或者上两阶跳上来的
for (int i = 2; i <= n; i++) {
arr[i] = arr[i - 1] + arr[i - 2];
}
return arr[n];
}
问题一与问题二属于同一类型题目,还有很多类似的题目可以运用斐波那契,可见一个斐波那契数列的重要性