机器学习第一课

1. 机器学习分类

  • 监督学习:有数据和标签的。输入猫图片,输出猫
  • 非监督学习:只有数据没有标签的。输入猫图片,输出猫的特征
  • 半监督学习:输入猫图片,输出猫以及特征
  • 强化学习:从经验中总结提升的。不断投篮,总结出如何投进去的技巧
  • 遗传学习:玩游戏总结更好的玩法,淘汰不好的玩法

2. 神经网络

2.1 生物神经网络和人工神经网络

生物神经网络和人工神经网络是两种不同的概念和实体,它们有一些共同之处,但也存在一些重要的区别。

  • 结构和组成:生物神经网络是指存在于生物体内的神经元(神经细胞)的网络系统。它由大量神经元组成,通过神经元之间的突触连接进行信息传递和处理。人工神经网络是一种模拟生物神经网络的计算模型,由人工构造的人工神经元和它们之间的连接组成。
  • 学习方式:生物神经网络通过生物学上的学习机制,如突触可塑性,来调整神经元之间的连接强度。这种学习过程可以根据经验和环境的反馈进行自适应调整。人工神经网络通过一系列算法和数学模型来进行学习,例如监督学习、无监督学习、强化学习等。
  • 可塑性和自适应性:生物神经网络具有高度的可塑性和自适应性,能够实时调整连接强度和神经元的活动模式以适应不断变化的环境。人工神经网络也可以通过学习算法来适应新的数据和情境,但其可塑性一般不及生物神经网络。
  • 规模和复杂性:生物神经网络在生物体内具有复杂的结构和层次化的组织,涉及大量神经元和突触连接。人工神经网络的规模和复杂性可以根据需求而变化,从简单的几个神经元到庞大的深度神经网络。
  • 目的和应用:生物神经网络是生物体内的基本神经系统,负责感知、运动控制、认知和行为等方面的功能。人工神经网络被广泛应用于机器学习和人工智能领域,用于模式识别、预测、决策等任务。

2.2 卷积神经网络

卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度学习模型,主要用于图像识别和计算机视觉任务。它在处理具有网格结构数据(如图像)时表现出色,并在许多视觉任务中取得了显著的成功。

卷积神经网络的核心思想是利用卷积层(Convolutional Layer)和池化层(Pooling Layer)来提取图像的特征,并通过全连接层(Fully Connected Layer)进行分类或回归。以下是卷积神经网络的主要组成部分:

  1. 卷积层:卷积层通过应用一系列卷积核(也称为滤波器)在输入图像上进行卷积操作,从而提取图像的局部特征。卷积操作可以捕捉到图像的边缘、纹理和其他低级特征。
  2. 池化层:池化层通过对卷积层输出的局部区域进行降采样,减少特征图的尺寸。常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling),它们可以保留主要特征并减少计算量。
  3. 激活函数:在卷积神经网络的各个层中,通常会使用非线性激活函数,如ReLU(Rectified Linear Unit),来增加网络的非线性表达能力。
  4. 全连接层:在经过多个卷积层和池化层之后,卷积神经网络会通过全连接层将提取到的特征映射转换为最终的输出。全连接层通常用于分类、回归或其他任务的决策。
  5. Dropout:为了防止过拟合,卷积神经网络中常使用Dropout技术,在训练过程中随机丢弃一些神经元,以减少神经元之间的依赖关系。

卷积神经网络通过多个卷积层和池化层的组合,逐渐提取图像的高级特征,并在全连接层中进行最终的分类或回归。这种层级式的结构使得卷积神经网络能够有效地处理图像数据,并在图像分类、目标检测、语义分割等计算机视觉任务中取得卓越的性能。

2.3 循环神经网络

循环神经网络是一种具有循环连接的神经网络,专门用于处理序列数据,如语言、音频、时间序列等。

循环神经网络的主要特点是在网络内部引入了循环结构,使得信息可以在网络中持续传递和更新。与传统的前馈神经网络不同,循环神经网络在每个时间步都接收输入,并将前一时间步的隐藏状态作为额外的输入,以便在处理当前输入时考虑历史信息。

在循环神经网络中,每个时间步都有一个相同的网络结构,其中包含两个关键部分:

  1. 隐藏状态:隐藏状态是循环神经网络中的关键组成部分。它在每个时间步中都被更新,并包含了之前时间步的信息。隐藏状态可以看作是网络对过去信息的内部表示,它在处理序列数据时具有记忆能力。
  2. 循环连接:循环神经网络通过循环连接将隐藏状态从一个时间步传递到下一个时间步,使得网络能够在处理序列数据时保留历史信息。这种循环连接导致了网络的参数共享,使得循环神经网络能够处理任意长度的序列。

经典的循环神经网络模型是基于简单循环神经单元或长短期记忆单元的,它们具有一定的记忆能力,能够捕捉到序列中的长期依赖关系。

循环神经网络在自然语言处理(如语言建模、文本生成)、机器翻译、语音识别、时间序列预测等任务中具有广泛的应用。然而,传统的循环神经网络在处理长期依赖和梯度消失/爆炸等问题上存在一定的挑战。为了解决这些问题,出现了一些改进的循环神经网络结构,如门控循环单元(Gated Recurrent Unit,GRU)和变种的LSTM等。

2.4 LSTM循环神经网络(长短期记忆)

LSTM(Long Short-Term Memory)是一种特殊类型的循环神经网络(RNN),旨在解决传统RNN面临的长期依赖问题和梯度消失/爆炸问题。LSTM通过引入一种称为记忆单元(Memory Cell)的结构,有效地捕捉和记忆长期依赖关系。与传统的RNN单元不同,LSTM单元包含三个关键的门控结构:

  1. 遗忘门(Forget Gate):遗忘门决定了在当前时间步是否忘记之前的记忆。它通过一个sigmoid函数来控制记忆单元中的信息丢弃程度。遗忘门的输出可以过滤掉不重要的历史信息,同时保留重要的记忆。
  2. 输入门(Input Gate):输入门用于控制当前时间步的输入信息对记忆单元的更新。它通过一个sigmoid函数确定更新哪些记忆,并使用一个tanh函数生成新的候选记忆。输入门的输出将与候选记忆相乘并添加到记忆单元中。
  3. 输出门(Output Gate):输出门决定了从记忆单元输出到下一个时间步的信息。它通过一个sigmoid函数控制哪些记忆将被输出,然后将记忆单元的内容通过一个tanh函数进行处理,并与输出门的输出相乘,得到最终的输出。

通过这些门控结构,LSTM能够选择性地忘记、更新和输出信息,从而更好地处理长期依赖和梯度消失/爆炸问题。LSTM的记忆单元允许网络在长序列中保持和传递信息,从而更好地捕捉序列中的关键模式和依赖关系。

LSTM网络由多个LSTM单元组成,每个单元在时间步上运行,并且可以有效地处理序列数据。它在自然语言处理(如语言建模、机器翻译)、语音识别、文本生成等任务中广泛应用,取得了显著的性能提升。

2.5 自编码

自编码(Autoencoder)是一种无监督学习的神经网络模型,用于学习输入数据的低维表示。它的目标是将输入数据经过编码(压缩)和解码(解压)的过程后,尽可能地重构出原始输入数据。

自编码器由两个主要部分组成:

  1. 编码器(Encoder):编码器将输入数据映射到一个低维的潜在表示空间,也称为编码(或隐藏)表示。编码过程通常通过多个隐藏层来实现,其中每个隐藏层都会对输入进行非线性变换和降维操作。编码器的目标是将输入数据压缩到一个更紧凑、高级的表示形式。
  2. 解码器(Decoder):解码器接收编码器的输出,并尝试将其重构为与原始输入数据尽可能相似的形式。解码器的结构与编码器相对称,它逐步恢复输入数据的维度,并逐渐重建原始数据的表示。解码器的目标是尽可能地还原原始输入,最小化重构误差。

自编码器的训练过程通过最小化重构误差来实现,即使得解码器的输出与原始输入尽可能接近。常用的重构误差度量包括平均平方误差(Mean Squared Error,MSE)和交叉熵损失(Cross-Entropy Loss)等。

自编码器的一个重要应用是无监督的特征学习和数据降维。通过训练自编码器,我们可以获得数据的紧凑表示,从而提取出数据的重要特征。这些特征可以用于后续的分类、聚类或其他机器学习任务。

此外,自编码器还可以用于数据去噪、图像生成、特征提取、异常检测等任务。通过限制自编码器的容量和引入稀疏性约束等技术,我们可以进一步约束自编码器的表示能力,使其能够学习到更有用的数据表示。

2.6 生成对抗网络GAN

生成对抗网络(Generative Adversarial Network,GAN)是一种包含生成器(Generator)和判别器(Discriminator)两个模型的框架,用于生成逼真的、与真实数据相似的合成数据。

GAN的核心思想是通过让生成器和判别器相互博弈的方式进行训练。生成器试图生成与真实数据相似的合成数据,而判别器则试图区分真实数据和生成器产生的合成数据。两个模型通过对抗的方式相互竞争和改进,从而逐渐提高生成器生成逼真样本的能力。

具体来说,GAN的训练过程如下:

  1. 生成器训练:生成器接收一个随机噪声向量作为输入,并生成一组合成数据。生成器的目标是使生成的数据尽可能逼真,以至于判别器无法区分生成数据和真实数据。生成器的损失函数通常是判别器的输出与目标标签的交叉熵损失。
  2. 判别器训练:判别器接收真实数据和生成器生成的合成数据,并尝试将它们区分开来。判别器的目标是使其能够准确地区分真实数据和生成数据。判别器的损失函数通常是真实样本的交叉熵损失与生成样本的交叉熵损失的组合。

通过交替地进行生成器和判别器的训练,GAN的目标是找到一个平衡点,使生成器生成的样本逼真度不断提高,同时判别器无法有效区分真实数据和生成数据。

GAN的一个重要特点是它可以无需显式地定义生成数据的分布,而是通过学习数据的分布来生成新的样本。这使得GAN在图像生成、图像转换、视频生成、文本生成等领域具有广泛的应用。

值得注意的是,GAN的训练过程相对复杂,容易出现不稳定的情况,如模式崩溃和模式塌陷等问题。为了解决这些问题,研究者提出了许多改进的GAN模型,如深层卷积生成对抗网络(DCGAN)、条件生成对抗网络(CGAN)、生成对抗网络的变种(如WGAN、CycleGAN等),以及一些训练技巧和稳定性优化方法。

2.7 梯度下降

梯度下降(Gradient Descent)是一种常用的优化算法,用于寻找函数的最小值或最大值。它是机器学习和深度学习中常用的参数优化方法之一。

梯度下降的基本思想是通过迭代更新参数的方式来逐步接近函数的最小值(或最大值)。具体而言,它通过计算目标函数关于参数的梯度(导数)方向,并按照梯度的相反方向更新参数,从而使函数值逐渐降低(或增加)。

以下是梯度下降的基本步骤:

  1. 初始化参数:首先,需要对待优化的参数进行初始化,可以是随机值或者根据经验设定的初值。
  2. 计算梯度:通过计算目标函数关于参数的偏导数(梯度),确定参数的更新方向。梯度表示函数在当前参数值处的变化率,指向函数值上升最快的方向。
  3. 参数更新:根据梯度的相反方向更新参数。可以通过将当前参数值减去学习率(learning rate)乘以梯度来实现参数更新。学习率决定了每次迭代中参数更新的大小。
  4. 重复迭代:重复执行步骤2和步骤3,直到满足停止准则,如达到最大迭代次数、目标函数收敛或参数变化很小等。

梯度下降算法有不同的变体,包括批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)和小批量梯度下降(Mini-batch Gradient Descent)。它们的区别在于每次计算梯度和更新参数的样本数量不同。

梯度下降算法在机器学习和深度学习中被广泛应用于模型的训练过程,通过最小化(或最大化)目标函数来优化模型参数。然而,梯度下降也面临着一些挑战,如局部最优解、学习率选择、收敛速度等问题。为了解决这些问题,研究者提出了一些改进的梯度下降算法,如动量梯度下降(Momentum Gradient Descent)、自适应学习率方法(如AdaGrad、Adam等)等。

2.8 迁移学习

迁移学习(Transfer Learning)是一种机器学习方法,通过将已经在一个任务上学习到的知识和模型参数应用到另一个相关任务上,以加速学习过程、提高性能和泛化能力。

在传统的机器学习方法中,每个任务通常需要独立地进行数据收集、特征提取和模型训练。然而,这些任务之间可能存在一些共享的特征或知识,迁移学习的目标就是利用这些共享的信息,将已学习到的知识迁移到新任务上,从而更高效地解决新任务。

迁移学习的关键概念包括源领域(source domain)和目标领域(target domain)。源领域是已经学习过的任务或数据集,而目标领域是当前想要解决的新任务或数据集。迁移学习的主要假设是,源领域和目标领域之间存在一定的相似性或相关性,使得源领域上学到的知识可以在目标领域上有所帮助。

迁移学习可以在多个层面上进行知识迁移,其中常见的方法包括:

  1. 特征提取:将源领域上训练好的特征提取器(如卷积神经网络的卷积层)直接应用于目标领域,以提取目标领域上的特征。这样可以避免重新训练整个模型,节省训练时间和计算资源。
  2. 神经网络微调:将源领域上训练好的神经网络模型作为初始化参数,并在目标领域上继续对模型进行训练。通过微调模型的部分或全部参数,使其适应目标任务的特点。
  3. 迁移学习策略:根据目标任务和源领域之间的相似性,设计合适的迁移学习策略。例如,可以根据源领域和目标领域的数据分布差异来选择适当的特征变换、样本筛选或模型融合方法。

迁移学习在许多领域都有广泛应用,如计算机视觉、自然语言处理和推荐系统等。它可以帮助解决数据稀缺问题、缓解标注数据不足的困扰,并提供更好的泛化能力和模型性能。然而,选择合适的源领域、目标领域和迁移策略仍然是迁移学习中的挑战之一,需要根据具体问题进行调整和优化。检验神经网络

3. 检验神经网络

  1. 准确率(Accuracy):准确率是最常用的评估指标之一,特别适用于分类任务。它表示神经网络在测试数据集上正确分类的样本比例。准确率越高,表示网络分类能力越好。
  2. 损失函数(Loss Function):损失函数衡量了神经网络在训练过程中预测值与真实值之间的差异。常见的损失函数包括均方误差(Mean Squared Error,MSE)和交叉熵损失(Cross-Entropy Loss)。通过监控损失函数的下降情况,可以评估神经网络的训练效果。
  3. 精确率(Precision)、召回率(Recall)和 F1 值(F1-Score):这些指标主要应用于二分类或多分类任务中,用于评估模型在不同类别上的性能。精确率表示模型预测为正例的样本中实际为正例的比例,召回率表示实际为正例的样本中被模型正确预测为正例的比例。F1 值综合了精确率和召回率,通常用于综合评估分类模型的性能。
  4. ROC 曲线和 AUC(Area Under the Curve):ROC 曲线是一种绘制真阳性率(True Positive Rate)与假阳性率(False Positive Rate)之间关系的图形。AUC 是 ROC 曲线下的面积,用于度量分类模型的整体性能。AUC 值越接近于1,表示模型的分类能力越好。
  5. 交叉验证(Cross-Validation):为了更准确地评估神经网络的性能,可以采用交叉验证的方法。交叉验证将数据集划分为多个子集,然后进行多次训练和验证,以获取更稳定的性能评估结果。

此外,还可以使用可视化工具和方法来检验神经网络,例如绘制训练曲线、观察权重和梯度的变化、可视化中间层的特征图等。这些方法可以帮助理解网络的学习过程和特征提取能力。需要注意的是,不同任务和应用场景可能有不同的评估指标和方法。根据具体情况,选择适合任务需求的评估方法,并结合领域知识进行综合评估和解释。

4. 特征标准化

现实生活中,我们的数据通常具有多样性和差异性。这些数据可能来自不同的来源,由不同的人采集,并且具有不同的规格。用最经典的房价预测例子来说明。

在使用机器学习进行房价预测时,我们会考虑房屋的各个方面作为特征来预测房价。这些特征可以包括离市中心的距离、房屋的楼层、房屋的面积、所在城市、房间的数量等等。这些特征的取值范围通常会有很大差异。例如,楼层可能在2到30层之间变化,房屋面积可能是几百到几千平方英尺不等,离市中心的距离可能以千米计算。

为了在机器学习模型中处理这些差异,通常需要对数据进行预处理和归一化。这可以包括特征缩放、标准化或者使用其他技术来确保不同特征的取值范围在合理的范围内,以便模型能够更好地学习和预测房价。

总之,现实生活中的数据多种多样,来自不同的来源,具有不同的规格。在机器学习任务中,我们需要处理这些数据的差异性,以便能够有效地进行预测和分析。

回到机器学习中,如果我们以一个简单的线性回归方程来预测房屋的价格,那方程可能会是这样:价格=a×离市中心+b×楼层+c×面积。其中的a、b、c就是机器学习需要努力努力再努力来优化的参数。

我们说的具体一点,用 a、b、c 算出来的价格是预测价格。机器学习需要计算预测值和实际值之间的差异,然后对这个误差进行数学处理,使其成为进步的阶梯,然后反向传递回参数 a、b、c 来提升下次的预测准确度。这些概念与标准化之间存在关联。

5. 激励函数

当我们构建神经网络时,激励函数是一种用于决定神经元是否激活的函数。它接收神经元的输入,并产生输出信号,用于传递到下一层神经元。

可以把激励函数比喻成神经元的“开关”,它根据输入信号的大小来决定神经元是否应该激活(输出高值)或者抑制(输出低值)。激励函数的作用是引入非线性特性,使神经网络能够更好地学习和表示复杂的模式和关系。

常见的激励函数包括:

  1. Sigmoid函数:Sigmoid函数将输入映射到一个介于0和1之间的连续值。它具有平滑的曲线形状,激活范围较窄,常用于二元分类问题。
  2. ReLU函数(Rectified Linear Unit):ReLU函数在输入大于0时返回输入值,而在输入小于等于0时返回0。ReLU函数的优点是计算简单且不会导致梯度消失问题,常用于深度神经网络。
  3. Leaky ReLU函数:Leaky ReLU函数在输入小于0时返回一个较小的斜率值,而不是返回0。这样可以解决ReLU函数在负数区域出现的“神经元死亡”问题。
  4. Tanh函数(双曲正切函数):Tanh函数将输入映射到一个介于-1和1之间的连续值。它在输入接近0时响应较大,在输入较大或较小时接近饱和。Tanh函数在某些任务中比Sigmoid函数有更好的表现。

这些激励函数各有特点,可以根据具体任务和网络架构的要求进行选择。激励函数的合理选择可以帮助网络更好地学习和表示数据,提高神经网络的性能。

6. 过拟合

过拟合是指在机器学习中,当我们训练一个模型时,它在训练数据上表现得非常好,但在新的、之前未见过的数据上表现较差的情况。可以把过拟合想象成模型在训练过程中“过于专注”,把训练数据中的细节和噪声都学习进去,从而导致在处理新数据时出现问题。

一个常见的例子是记忆学习。假设我们用一个神经网络来学习识别数字图片。如果我们只用很少的图片训练网络,它可能会记住每个训练图片的细节,而不是学习到普遍适用于所有数字的特征。当面对新的图片时,网络可能会因为过分追求训练数据的细节而产生错误的预测。

过拟合的原因通常是模型的复杂性过高,参数过多,以及训练数据量不足。当模型过于复杂时,它可能会把训练数据中的噪声和特异性特征当作普遍规律,导致在新数据上的泛化能力下降。另外,当训练数据很少时,模型可能没有足够的样本来学习到普遍规律,容易过度依赖少量的训练样本。

为了应对过拟合问题,可以采取以下方法:

  1. 增加训练数据:更多的训练数据可以帮助模型学习到更广泛的模式和规律,减少对训练数据中特定样本的过度依赖。
  2. 简化模型:减少模型的复杂性,例如减少神经网络的层数、节点数或参数量,可以降低过拟合的风险。
  3. 正则化(Regularization):通过在模型的损失函数中引入正则化项,对模型的复杂性进行惩罚,以防止过拟合。常见的正则化方法包括L1正则化和L2正则化。
  4. Dropout:在训练过程中,随机地将一部分神经元的输出置为零,以减少神经元之间的依赖关系,提高模型的泛化能力。
  5. 交叉验证:将数据集划分为训练集和验证集,在训练过程中监测模型在验证集上的性能。如果模型在训练集上表现良好但在验证集上表现差,可能存在过拟合问题。

通过以上方法,我们可以控制模型的复杂度、增加训练数据、引入正则化等,以减少过拟合的风险,提高模型的泛化能力,使其能够更好地适应新的数据。

7. 加速神经网络训练

加速神经网络训练是指通过一些技术和方法来提高神经网络训练的速度。神经网络的训练通常需要大量的计算资源和时间,因此加速训练过程可以使我们更高效地构建和优化模型。

以下是几种常见的加速神经网络训练的方法:

  1. 批量训练(Batch Training):传统的神经网络训练是逐个样本进行的,而批量训练是将多个样本一起输入模型进行训练。批量训练可以充分利用硬件资源,同时减少数据传输和计算开销,从而提高训练速度。
  2. GPU 加速:图形处理器(GPU)在并行计算方面有很强的能力,可以加速神经网络的训练过程。通过使用支持 GPU 计算的深度学习框架,可以将神经网络的计算任务分配给 GPU 进行并行处理,从而显著提高训练速度。
  3. 分布式训练:分布式训练是将神经网络的训练任务分发到多台计算机或服务器上进行并行处理。每台计算机负责处理部分数据和参数更新,然后将结果进行集成。分布式训练可以充分利用多台设备的计算能力,加快训练速度。
  4. 参数初始化:合适的参数初始化可以帮助神经网络更快地收敛到最优解。通过选择适当的初始化方法,如 Xavier 初始化或 He 初始化,可以提高训练的效率和稳定性。
  5. 小批量规范化(Mini-batch Normalization):批量规范化是一种在神经网络中广泛使用的技术,可以加速训练过程。它通过对每个小批量的输入进行规范化,使得网络对输入数据的变化更加稳定,从而加速收敛和提高训练速度。
  6. 提前停止(Early Stopping):在训练过程中,可以通过监测验证集上的性能来判断模型的训练进展。当验证集上的性能不再改善时,可以提前停止训练,避免过度拟合并节省训练时间。

这些方法可以单独或结合使用,根据具体情况来加速神经网络的训练过程。同时,还可以结合硬件加速和优化算法等技术,进一步提高训练速度和效率。

  • 23
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值