LSTM原理图解

在解释LSTM原理前先来理解一下RNN的原理

RNN基本原理

原理简介

当我们处理与事件发生的时间轴有关系的问题时,比如自然语言处理,文本处理,文字的上下文是有一定的关联性的;时间序列数据,如连续几天的天气状况,当日的天气情况与过去的几天有某些联系;又比如语音识别,机器翻译等。在考虑这些和时间轴相关的问题时,传统的神经网络就无能为力了,因此就有了RNN(recurrent neural network,循环神经网络)。

循环神经网络的训练类似于传统神经网络的训练。我们也使用反向传播算法,但是有所变化。因为循环神经网络在所有时刻的参数是共享的,但是每个输出的梯度不仅依赖当前时刻的计算,还依赖之前时刻的计算。例如,为了计算时刻 t = 4 的梯度,我们还需要反向传播3步,然后将梯度相加。这个被称为Backpropagation Through Time(BPTT)。

这与我们在深度前馈神经网络中使用的标准反向传播算法基本相同。主要的差异就是我们将每时刻 W 的梯度相加。在传统的神经网络中,我们在层之间并没有共享参数,所以我们不需要相加。

RNN的缺点

RNN 的关键点之一就是他们可以用来连接先前的信息到当前的任务上,例如使用过去的视频段来推测对当前段的理解。但是当相关信息和当前预测位置之间的间隔变得非常大,RNN 会丧失学习到连接如此远的信息的能力。我们仅仅需要明白的是利用BPTT算法训练出来的普通循环神经网络很难学习长期依赖(例如,距离很远的两步之间的依赖),原因就在于梯度消失/发散问题。但是RNN 绝对可以处理这样的长期依赖问题,人们可以仔细挑选参数来解决这类问题中的最初级形式,但在实践中,RNN 肯定不能够成功学习到这些知识。训练和参数设计十分复杂。LSTM就是专门设计出来解决这个问题的。

LSTM

LSTM网络

long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层。
在这里插入图片描述

图1.RNNcell
LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

在这里插入图片描述

图2.LSTMcell

LSTM核心思想

LSTM的关键在于细胞的状态整个(绿色的图表示的是一个cell),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

在这里插入图片描述

图3.LSTMcell内部结构图
若只有上面的那条水平线是没办法实现添加或者删除信息的。而是通过一种叫做 门(gates) 的结构来实现的。

门 可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

在这里插入图片描述

图6.信息节点
sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0 表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的基本结构来实现信息的保护和控制。这三个门分别是输入门、遗忘门和输出门

深入理解LSTM

遗忘门

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取ht−1和xt,输出一个在 0到 1之间的数值给每个在细胞状态Ct−1中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

在这里插入图片描述
其中ht−1表示的是上一个cell的输出,xt表示的是当前细胞的输入。σ表示sigmod函数。

输入门

下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个 步骤:首先,一个叫做“input gate layer ”的 sigmoid 层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容,C^t 。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。
在这里插入图片描述

现在是更新旧细胞状态的时间了,Ct−1更新为Ct。前面的步骤已经决定了将会做什么,我们现在就是实际去完成。

我们把旧状态与ft相乘,丢弃掉我们确定需要丢弃的信息。接着加上it∗C~t。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。

输出门

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在这里插入图片描述

实现

keras.layers.LSTM(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False)

参数

units: 正整数,输出空间的维度。
activation: 要使用的激活函数 (详见 activations)。 如果传入 None,则不使用激活函数 (即 线性激活:a(x) = x)。
recurrent_activation: 用于循环时间步的激活函数 (详见 activations)。 默认:分段线性近似 sigmoid (hard_sigmoid)。 如果传入 None,则不使用激活函数 (即 线性激活:a(x) = x)。
use_bias: 布尔值,该层是否使用偏置向量。
kernel_initializer: kernel 权值矩阵的初始化器, 用于输入的线性转换 (详见 initializers)。
recurrent_initializer: recurrent_kernel 权值矩阵 的初始化器,用于循环层状态的线性转换 (详见 initializers)。
bias_initializer:偏置向量的初始化器 (详见initializers).
unit_forget_bias: 布尔值。 如果为 True,初始化时,将忘记门的偏置加 1。 将其设置为 True 同时还会强制 bias_initializer=“zeros”。 这个建议来自 Jozefowicz et al.。
kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数 (详见 regularizer)。
recurrent_regularizer: 运用到 recurrent_kernel 权值矩阵的正则化函数 (详见 regularizer)。
bias_regularizer: 运用到偏置向量的正则化函数 (详见 regularizer)。
activity_regularizer: 运用到层输出(它的激活值)的正则化函数 (详见 regularizer)。
kernel_constraint: 运用到 kernel 权值矩阵的约束函数 (详见 constraints)。
recurrent_constraint: 运用到 recurrent_kernel 权值矩阵的约束函数 (详见 constraints)。
bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)。
dropout: 在 0 和 1 之间的浮点数。 单元的丢弃比例,用于输入的线性转换。
recurrent_dropout: 在 0 和 1 之间的浮点数。 单元的丢弃比例,用于循环层状态的线性转换。
implementation: 实现模式,1 或 2。 模式 1 将把它的操作结构化为更多的小的点积和加法操作, 而模式 2 将把它们分批到更少,更大的操作中。 这些模式在不同的硬件和不同的应用中具有不同的性能配置文件。
return_sequences: 布尔值。是返回输出序列中的最后一个输出,还是全部序列。
return_state: 布尔值。除了输出之外是否返回最后一个状态。
go_backwards: 布尔值 (默认 False)。 如果为 True,则向后处理输入序列并返回相反的序列。
stateful: 布尔值 (默认 False)。 如果为 True,则批次中索引 i 处的每个样品的最后状态 将用作下一批次中索引 i 样品的初始状态。
unroll: 布尔值 (默认 False)。 如果为 True,则网络将展开,否则将使用符号循环。 展开可以加速 RNN,但它往往会占用更多的内存。 展开只适用于短序列。

原文链接:https://blog.csdn.net/weixin_44162104/article/details/88660003

  • 1
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值