01 小马智行纳斯达克敲钟
北京时间2024年11月27日晚间,小马智行在纳斯达克挂牌上市
政策环境的友好为智能驾驶的发展创造了条件
工业和信息化部、公安部、住房和城乡建设部、交通运输部等五部委联合发布的《关于开展智能网联汽车“车路云一体化”应用试点的通知》。国家层面发布了关于智能网联汽车基础设施、产业发展及其标准、网络安全标准、产品准入管理、试点城市管理、道路测试等内容的一系列规范性文件或指南。试点城市设立:北京、上海、广州、深圳等城市被选为智能网联汽车示范运营试点城市,这些城市根据自身情况制定了一系列鼓励政策和管理细则,为测试和商业化运营提供了保障。
不过,自动驾驶依然是一门烧钱的生意。招股书披露,从2022年初到2024年6月30日,小马智行累计净亏损为3.24亿美元(约合人民币23.17亿元),其中,2024年上半年净亏损为5178万美元(约合人民币3.7亿元)。
02 从小马智行看中国自动驾驶
市场竞争格局多元:
中国无人驾驶汽车企业主要分为三大阵营:
- 互联网/高科技公司如百度、滴滴等,凭借强大的技术研发实力,项目投入巨大。
- 整车制造厂商如广汽、吉利、比亚迪、长安等,拥有丰富的汽车制造经验和资源。
- 初创公司小马智行等,以其技术创新和商业模式的灵活性,不断探索新的发展路径。
03 自动驾驶走过了漫长的道路
- 1995年:美国卡内基梅隆大学的“Navlab”项目首次实现了自动驾驶车辆在城市道路上行驶。
- 2002年:DARPA宣布了一项重大挑战,为顶级研究机构的研究人员设立无人驾驶汽车竞赛,推动了自动驾驶技术的快速发展。
- 2009年:谷歌开始秘密开发无人驾驶汽车项目,该项目现在被称为Waymo。
- 2014年:谷歌展示了没有方向盘、油门或刹车踏板的无人驾驶汽车的原型,实现了100%的自动驾驶。
- 2016年:特斯拉Autopilot系统发生首次致死事故,引发了公众广泛讨论。
- 2020年代初:多个城市开始试点自动驾驶出租车、公交车等公共交通工具...
一、初期探索与实验阶段(20世纪末-2010年代初) |
技术起源:自动驾驶技术的探索可追溯到20世纪末,如1995年美国卡内基梅隆大学的“Navlab”项目首次实现了自动驾驶车辆在城市道路上行驶。 |
技术特点:技术主要集中在实验室和特定环境下的测试,难以在复杂环境中实现稳定行驶。 |
技术进步:随着激光雷达、摄像头、超声波传感器等传感器技术的发展,以及机器学习和人工智能算法的进步,自动驾驶技术取得了重要突破。 |
二、实验室测试与功能集成阶段(2000年代中期-2010年代初) |
技术发展:进入实验室测试阶段,研究者们开始使用更先进的算法和传感器技术 |
系统发展:智能驾驶辅助系统(ADAS)开始广泛应用,如自适应巡航控制、车道保持辅助、自动紧急制动等功能。 |
三、公路测试与商业化初步阶段(2010年代中期-2020年代初) |
测试扩大:测试逐步扩大,各类测试车辆在不同城市的道路上进行了大量测试。 |
商业化进程:自动驾驶技术正朝着商业化和实际应用迈进,越来越多的汽车制造商和科技公司投入到自动驾驶领域,推出了商业化的自动驾驶解决方案。 |
实际应用:一些城市开始试点自动驾驶出租车、公交车等公共交通工具,初步实现了自动驾驶技术在现实生活中的应用。 |
四、高度自动化与法规完善阶段(2020年代初至今) |
技术升级:汽车制造商推出了配备高级驾驶辅助系统的汽车,实现特定条件下自动驾驶。 |
法规完善:各国政府开始出台相关法律法规,以规范道路行驶和事故责任等问题。 |
技术趋势:包括L4高度自动化和L5完全自动化。这将需要解决一系列技术难题,如环境感知的精准性、决策算法的鲁棒性、车辆控制的实时性等。 |
04 自动驾驶比拼的究竟是什么
自动驾驶是一个复杂且高度集成的系统,要搞定自动驾驶,需要具备以下几方面的知识和技术:
- 计算机科学和编程基础:了解基本的计算机科学概念、数据结构和算法。学习一种或多种编程语言,如Python、Java或C++。
- 人工智能与机器学习:深入研究机器学习算法、神经网络和深度学习。了解如何使用这些技术来训练和优化自动驾驶汽车的性能。
- 传感器技术:学习各种传感器(如摄像头、雷达、激光雷达等)的工作原理和应用。了解如何将来自不同传感器的数据融合在一起,以提供更准确的环境感知。
- 计算机视觉:研究计算机视觉的原理和应用,特别是与自动驾驶汽车相关的领域,如目标检测、跟踪和行为识别。
- 控制系统理论:研究控制系统的原理和应用,包括线性系统、非线性系统和最优控制。了解如何在自动驾驶汽车中设计稳定、可靠的控制策略。
- 车辆动力学:学习车辆动力学的基本原理,如运动学、静力学和动力学。了解如何在自动驾驶汽车中实现对车辆的精确控制,以确保安全和高效的驾驶。
- 高精度地图与定位技术:了解如何使用全球定位系统(GPS)以及地图数据来确定车辆在道路上的精确位置。同时,还需要实时更新的地图信息以及高精度地图数据,以便进行路径规划和导航。
- V2X通信技术:研究车辆与其他车辆、基础设施和行人之间的通信技术,如V2V、V2I和V2P。了解如何通过这些通信协议来实现更安全、更高效的道路交通。
- 道路法规和安全标准:熟悉与自动驾驶汽车相关的国际、国内和地区法规和标准,确保自动驾驶汽车的设计和运行是合规的且安全的。
- 实际驾驶经验:虽然理论知识非常重要,但实际驾驶经验和模拟器训练也是提高智能驾驶技能的关键。尝试在模拟器中进行虚拟驾驶,并在专业指导下进行实际驾驶练习。
从自动驾驶研究领域上看:
05以智能驾驶辅助系统(ADAS)为例:
ADAS的实现需要顶尖的硬件和软件条件共同支撑。这些条件包括高精度传感器、高性能计算单元、先进的感知算法、精准的决策规划算法、实时的控制算法、多传感器融合技术以及安全可靠的操作系统和通信协议等。
ADAS学科覆盖
- 计算机科学与技术:自动驾驶系统的核心在于算法和软件,因此计算机科学与技术专业是直接相关的。学习内容包括数据结构、算法设计、操作系统、数据库管理、计算机网络、人工智能、机器学习、深度学习等。
- 自动化:自动驾驶中的路径规划、决策制定、车辆控制等都需要自动化专业的支持。该专业培养的是控制系统的分析、设计与实现能力,课程涵盖自动控制原理、信号处理、嵌入式系统、传感器与执行器、机器人学等。
- 电子信息工程:该专业关注于信息的获取、传输、处理和利用,对于自动驾驶中的感知系统(如雷达、摄像头、激光雷达)和通信技术至关重要。学习内容包括数字信号处理、微电子技术、通信原理、电磁场与电磁波、信息论与编码等。
- 机械工程:自动驾驶车辆的设计、制造和维护离不开机械工程的知识。涉及车辆的物理设计与制造,包括车辆结构、动力系统、机械电子一体化等方面。课程包括机械设计基础、力学、流体力学、热力学、材料科学、机械制造技术等。
- 电气工程及其自动化:与车辆的电力驱动系统、能源管理、电池技术紧密相关。学习内容包括电路理论、电力电子技术、电机学、电力系统分析、电动汽车技术等。
- 智能科学与技术:这是一个较新的交叉学科,专注于人工智能技术的应用,包括模式识别、自然语言处理、机器视觉等,这些都是自动驾驶技术的关键组成部分。
智能驾驶辅助系统(ADAS)硬件条件
高精度传感器:
- 摄像头:用于图像采集和处理,识别交通标志、车道线、行人等。高分辨率摄像头能提供更清晰的图像,有助于提升识别的准确性。
- 雷达:包括毫米波雷达、超声波雷达等,用于检测前方车辆、障碍物的距离和速度。雷达具有穿透力强、不易受光线影响等特点,适用于各种天气和光线条件。
- 激光雷达(LiDAR):用于三维环境感知,生成高精度的环境点云图。LiDAR的高精度和高分辨率使其成为ADAS系统中不可或缺的传感器。
高性能计算单元:
- 中央处理单元(CPU):负责总体系统控制和管理。
- 图形处理单元(GPU):用于处理大量的传感器数据,特别是图像和点云数据。
- 专用人工智能芯片(AI Chip):用于加速深度学习算法的计算,提高感知和决策效率。
执行机构:
- 包括刹车系统、转向系统、灯光系统等,负责执行控制单元发出的指令,实现车辆的自主控制。
智能驾驶辅助系统(ADAS)软件条件
先进的感知算法:
用于对传感器数据进行处理和分析,构建车辆周围的环境模型。感知算法需要具备高鲁棒性和准确性,以应对各种复杂场景。
精准的决策规划算法:
基于感知结果做出合理的驾驶决策,如加速、减速、转向等。决策规划算法需要考虑多种因素,如交通规则、道路条件、车辆状态等。
实时的控制算法:
将决策结果转化为车辆的实际行为,确保车辆能够按照规划路径平稳行驶。控制算法需要具备高实时性和准确性,以应对突发情况。
多传感器融合技术:
通过对来自不同传感器的数据进行融合和分析,提高感知系统的鲁棒性和准确性。多传感器融合技术是实现高精度环境感知的关键。
安全可靠的操作系统和通信协议:
操作系统需要确保系统的稳定性和安全性,通信协议需要支持高速数据传输和低延迟通信,以满足ADAS系统的实时性要求。
中国追赶Waymo的关键点所需时间
它涉及到技术积累、市场应用、政策环境、资金投入等多个方面的综合考量。
首先,从技术层面来看,中国在自动驾驶技术方面已经取得了显著进步,包括传感器技术、算法优化、数据处理能力等方面的提升。然而,与Waymo等国际领先企业相比,中国企业在一些核心技术上仍存在一定差距。这种差距的缩小需要时间,具体取决于中国企业的研发投入、技术创新能力以及与国际先进技术的交流合作程度。
其次,市场应用方面,中国自动驾驶技术已经在出租车、物流、公共交通等多个领域进行了试点运营,并取得了积极成果。未来,随着技术的不断进步和政策的进一步支持,自动驾驶技术有望在中国市场实现更广泛的应用。然而,要实现大规模商业化应用,还需要克服诸多挑战,如法律法规的完善、公众接受度的提高等。
再者,政策环境对于自动驾驶技术的发展至关重要。中国政府已经出台了一系列促进自动驾驶商业化应用的政策措施,为行业发展提供了有力支持。然而,政策的制定和执行需要时间,且需要根据行业发展情况进行适时调整。
最后,资金投入也是推动自动驾驶技术发展的关键因素。自动驾驶技术的研发和应用需要大量的资金支持,包括研发经费、测试费用、运营成本等。因此,中国企业在追赶Waymo等国际领先企业的过程中,需要持续加大资金投入,并积极探索多元化的融资渠道。
中国追赶Waymo的关键点所需时间难以精确预测,但可以肯定的是,这需要中国企业在技术、市场、政策、资金等多个方面持续发力,不断缩小与国际先进水平的差距。同时,也需要政府、行业组织、科研机构等多方共同努力,为自动驾驶技术的发展创造更加有利的条件和环境。
具体来看细节差距:
传感器技术:
Waymo在激光雷达、摄像头、毫米波雷达等传感器技术方面拥有深厚的积累,能够实现高精度、远距离的环境感知。相比之下,中国企业在传感器技术方面虽然也取得了一定进展,但在精度、稳定性、成本等方面仍有待提升。
算法与计算能力:
Waymo在自动驾驶算法方面拥有强大的研发能力,包括深度学习、强化学习等先进技术的应用。同时,其背后的谷歌母公司也提供了强大的计算能力支持。而中国企业在算法和计算能力方面虽然也在不断提升,但与国际领先水平相比仍存在一定差距。
数据积累与处理:
Waymo在自动驾驶测试过程中积累了大量的行驶数据,这些数据对于算法的优化和模型的训练至关重要。相比之下,中国企业在数据积累方面相对薄弱,尤其是在实际道路测试数据的积累上仍有待加强。此外,在数据处理和分析能力方面也存在一定差距。
系统集成与优化:
Waymo在自动驾驶系统的集成与优化方面表现出色,能够实现各个模块之间的高效协同工作。而中国企业在系统集成与优化方面虽然也取得了一定进展,但在系统的稳定性、可靠性以及用户体验等方面仍有待提升。
目录