使用空洞卷积可以去噪(比如InceptionTime),原因如下:
- 增强感受野:感受野是指每个神经元接收的输入数据的区域。较大的感受野可以捕捉更广泛的信息,从而帮助网络更好地理解输入数据中的模式和结构,而这些模式和结构通常比单个数据点更具有鲁棒性。通过使用DCNN的空洞卷积操作,可以在不增加网络参数数量的情况下增加有效的感受野,进而提高处理传感器数据中的噪声的能力。
- 非线性映射:深度学习网络通过使用非线性激活函数(如ReLU)可以将输入数据映射到更高维的表示空间中。在这个高维空间中,网络可以更好地捕捉输入数据中的复杂结构和模式,从而提高分类或回归任务的准确性。通过使用更高维的表示空间,DCNN可以抑制传感器数据中的噪声,并提高网络的鲁棒性和泛化性能。
对于一个时序数据,他服从何种分布与他的时序没有关系