Permutations II

本文介绍了一种使用回溯法解决带有重复元素的排列问题的方法,并详细解释了如何避免生成重复的排列组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Questions:

请添加图片描述

思路:

首先这一类题型呢, 找combinations, permutations, balabala 都可以用dfs (backtracking)来做, 不过针对每个提醒题型都会有一些方法使用上的区别.

针对这个permutation II呢,它和permutation那道题的区别就是这道题会存在duplicaets, 而我们的答案中不可以有duplicate,
就像普通permutation那道题, given nums[] = [1,1,2]
用permutation那道题的方法, 我们一开始就把List combs = nums. = [1,1,2]
然后在backtracking 中 我们swap每个element的位置, 从而达到取得permutation的目的, 但是按照老方法处理这道permutation II 是没法remove duplicates的,
所以我们要做一些改变, 我们对backtracking的改变也可以顺便应用在permutation那道题上,
就是我们这次变成,starting with a empty List, then add nums into it. and we record the visited numbers.
就是说, 我们这次的方法就是一个一个加element进list, 然后做backtrack, 当recursion 返回之后,再把前面加进list的element 删除, 这样来达成找到所有permutation的目的.
因为每一个number in numbers只能用一次, 所以我们要有一个visited[] 来记录当前combs里哪些element已经在了。

然后针对这个题, 怎么排出duplicate呢, 就是当我们backtrack的时候, 比如说[1,1,2]
当我们从第一个1开始找组合的时候, 第二个1还没用过, 也就是说这个时候我们是第一次创造,[1,1,x]的组合。所以此时OK,没问题。
但是当我们backtrack之后,我们第一个1开始找组合的loop结束, 要开始从第二个1开始找组合时, 我们就重复了。 因为1已经当过原先combs里的第一个element了. 此时我们只会又得到一个[1,1,x]的组合.
所以我们要avoid这种 duplication
所以呢, 当visited[i-1] == false && nums[i] == nums[I-1] 的时候, 就代表有duplicate 了.
为什么是visited[I-1] == false呢, 因为在我们backtracking中, 但凡visited[i-1] = false了, 就代表此时已经backtrack回来了. 就是所谓的第一个1开始找组合的loop已经结束了. 现在要开始从第二个1找组合了.
同时nums[I] == nums[i-1] 是duplicate的另一个条件

    public List<List<Integer>> permuteUnique(int[] nums) {
        List<List<Integer>> list = new ArrayList<>();
        Arrays.sort(nums);
        backtrack(list, new ArrayList<>(), nums, new boolean[nums.length]);
        return list;
    }

    private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, boolean [] used){
        if(tempList.size() == nums.length){
            list.add(new ArrayList<>(tempList));
        } else{
            for(int i = 0; i < nums.length; i++){
                if(used[i] || i > 0 && nums[i] == nums[i-1] && !used[i - 1]) continue;
                used[i] = true; 
                tempList.add(nums[i]);
                backtrack(list, tempList, nums, used);
                used[i] = false; 
                tempList.remove(tempList.size() - 1);
            }
        }
    }
### Python 排列组合的使用方法与实例 Python 提供了 `itertools` 模块用于高效循环的各种工具函数。其中,`permutations` 函数可以用来生成给定序列的所有可能排列。 #### 导入 itertools 和 使用 permutations 为了使用排列功能,首先需要导入 `itertools` 模块中的 `permutations` 方法: ```python from itertools import permutations ``` #### 基本用法 当调用 `permutations(iterable, r=None)` 时,该函数返回长度为 `r` 的项迭代器;如果没有提供 `r` 参数,则默认等于可迭代对象的长度。每次迭代都会给出一个新的元组表示一种新的排列方式[^2]。 下面是一个简单的例子展示如何获取列表 `[1, 2, 3]` 中所有元素的不同顺序: ```python for p in permutations([1, 2, 3]): print(p) ``` 这会打印出如下结果: ``` (1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1) ``` #### 设置排列长度 还可以通过传递第二个参数来设置每种排列的具体长度。比如只想要两个数目的排列情况: ```python print(list(permutations('ABCD', 2))) ``` 这段代码将会输出: ``` [('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'A'), ('B', 'C'), ('B', 'D'), ('C', 'A'), ('C', 'B'), ('C', 'D'), ('D', 'A'), ('D', 'B'), ('D', 'C')] ``` #### 应用场景举例 假设有一个问题是要找出由字符 `'ABC'` 组成的所有三位字母串,并检查这些字符串是否满足某些条件(例如不含有重复字符)。那么就可以利用 `permutations` 来解决这个问题: ```python def has_unique_chars(s): """Check if string s contains all unique characters.""" return len(set(s)) == len(s) perms = [''.join(p) for p in permutations('ABC', 3)] filtered_perms = [p for p in perms if has_unique_chars(p)] print(filtered_perms) ``` 上述程序将创建一个包含所有符合条件的结果列表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值