每日一题——Python实现PAT乙级1059 C语言竞赛(举一反三+思想解读+逐步优化)四千字好文


一个认为一切根源都是“自己不够强”的INTJ

个人主页:用哲学编程-CSDN博客
专栏:每日一题——举一反三
Python编程学习
Python内置函数

Python-3.12.0文档解读

目录

我的写法

时间复杂度分析

空间复杂度分析

代码优化建议

总结

我要更强

优化方法

优化后的代码

代码解释

时间复杂度分析

空间复杂度分析

总结

哲学和编程思想

抽象与封装:

效率与优化:

简洁与清晰:

不变性与可变性:

DRY原则(Don't Repeat Yourself):

KISS原则(Keep It Simple, Stupid):

YAGNI原则(You Ain't Gonna Need It):

单一职责原则(Single Responsibility Principle):

开闭原则(Open/Closed Principle):


题目链接:https://pintia.cn/problem-sets/994805260223102976/exam/problems/type/7?problemSetProblemId=994805269828059136&page=0

我的写法

import math

def is_prime(num):
    if num == 2:
        return True
    elif num % 2 == 0 or num < 2:
        return False
    else:
        for i in range(3, math.isqrt(num) + 1, 2):
            if num % i == 0:
                return False
        return True

N = int(input())
tops = [int(input()) for _ in range(N)]
K = int(input())
ids = [int(input()) for _ in range(K)]

# 使用字典存储排名信息
rank_dict = {top: i + 1 for i, top in enumerate(tops)}

already_got = {top: 0 for top in tops}
if_has = {top: 1 for top in tops}

for i in range(K):
    current_id = ids[i]
    print(f"{str(current_id).zfill(4)}: ", end='')
    if current_id not in if_has:
        print("Are you kidding?")
    elif already_got[current_id] == 1:
        print("Checked")
    elif rank_dict[current_id] == 1:
        already_got[current_id] = 1
        print("Mystery Award")
    elif is_prime(rank_dict[current_id]):
        already_got[current_id] = 1
        print("Minion")
    else:
        already_got[current_id] = 1
        print("Chocolate")

这段代码的主要功能是根据输入的排名列表和查询ID列表,输出每个查询ID对应的奖励类型。代码的逻辑如下:

  1. 输入处理:读取排名列表和查询ID列表。
  2. 字典初始化:使用字典存储排名信息和查询状态。
  3. 查询处理:根据查询ID输出对应的奖励类型。

时间复杂度分析

  1. 输入处理:读取排名列表和查询ID列表的时间复杂度是 O(N + K),其中 N 是排名列表的长度,K 是查询ID列表的长度。
  2. 字典初始化:使用字典推导式初始化 rank_dict、already_got 和 if_has 的时间复杂度是 O(N)。
  3. 查询处理:对于每个查询ID,检查其是否在 if_has 字典中,以及更新 already_got 字典的状态。这些操作的时间复杂度是 O(1)。因此,整个查询处理的时间复杂度是 O(K)。

综合来看,整个代码的时间复杂度是 O(N + K)。

空间复杂度分析

  1. 输入存储:排名列表和查询ID列表的空间复杂度是 O(N + K)。
  2. 字典存储:rank_dict、already_got 和 if_has 字典的空间复杂度是 O(N)。

综合来看,整个代码的空间复杂度是 O(N + K)。

代码优化建议

  1. 输入处理:确保输入的格式和类型是正确的。
  2. 字典初始化:使用字典推导式初始化字典时,确保键和值的类型是正确的。
  3. 索引处理:在检查排名时,使用字典来存储排名信息,避免使用 index 方法,提高性能。
  4. 输出格式:确保输出的格式是正确的。

总结

这段代码在逻辑上是正确的,时间复杂度为 O(N + K),空间复杂度为 O(N + K)。通过使用字典来存储排名信息,避免了使用 index 方法,提高了性能。整体来说,代码是高效的,并且易于理解和维护。


我要更强

优化时间复杂度和空间复杂度的方法通常包括减少不必要的计算、使用更高效的数据结构、以及避免重复计算。以下是一些可能的优化方法,并附上相应的代码和注释。

优化方法

  1. 避免重复计算:使用缓存或记忆化技术来存储已经计算过的结果。
  2. 高效数据结构:使用集合(set)来快速检查元素是否存在。
  3. 减少不必要的字典:合并一些字典,减少空间占用。

优化后的代码

import math

def is_prime(num):
    if num == 2:
        return True
    elif num % 2 == 0 or num < 2:
        return False
    else:
        for i in range(3, math.isqrt(num) + 1, 2):
            if num % i == 0:
                return False
        return True

N = int(input())
tops = [int(input()) for _ in range(N)]
K = int(input())
ids = [int(input()) for _ in range(K)]

# 使用字典存储排名信息和查询状态
rank_dict = {top: i + 1 for i, top in enumerate(tops)}
already_got = set()

# 使用集合存储有效的ID,以加快查找速度
valid_ids = set(tops)

for current_id in ids:
    print(f"{str(current_id).zfill(4)}: ", end='')
    if current_id not in valid_ids:
        print("Are you kidding?")
    elif current_id in already_got:
        print("Checked")
    else:
        rank = rank_dict[current_id]
        if rank == 1:
            print("Mystery Award")
        elif is_prime(rank):
            print("Minion")
        else:
            print("Chocolate")
        already_got.add(current_id)

代码解释

  1. 输入处理:读取排名列表和查询ID列表。
  2. 字典初始化:使用字典推导式初始化 rank_dict,使用集合 valid_ids 存储有效的ID。
  3. 查询处理:使用集合 already_got 来记录已经查询过的ID,避免重复计算。

时间复杂度分析

  1. 输入处理:O(N + K)。
  2. 字典和集合初始化:O(N)。
  3. 查询处理:每个查询ID的检查时间复杂度是 O(1),因此总的时间复杂度是 O(K)。

综合来看,整个代码的时间复杂度是 O(N + K)。

空间复杂度分析

  1. 输入存储:O(N + K)。
  2. 字典和集合存储:O(N)。

综合来看,整个代码的空间复杂度是 O(N + K)。

总结

通过使用集合来存储有效的ID和已经查询过的ID,减少了不必要的字典,提高了查找速度。整体代码的时间复杂度和空间复杂度仍然是 O(N + K),但在实际运行中,由于集合的高效查找特性,性能会有所提升。


哲学和编程思想

这些优化方法体现了多个哲学和编程思想,具体包括:

  1. 抽象与封装:

    • 抽象:将问题分解为更小的、可管理的部分,例如将输入处理、字典初始化和查询处理分开。
    • 封装:将功能封装在函数中,例如 is_prime 函数,使得代码更模块化和可重用。
  2. 效率与优化:

    • 效率:通过使用集合(set)来快速检查元素是否存在,提高了查找效率。
    • 优化:避免重复计算,例如使用 already_got 集合来记录已经查询过的ID,避免重复处理。
  3. 简洁与清晰:

    • 简洁:使用字典推导式和集合来简化代码,减少冗余。
    • 清晰:代码结构清晰,易于理解和维护。
  4. 不变性与可变性:

    • 不变性:尽量使用不可变数据结构,例如集合(set),以减少副作用和提高代码的稳定性。
    • 可变性:在必要时使用可变数据结构,例如 already_got 集合,以记录状态变化。
  5. DRY原则(Don't Repeat Yourself):

    • 避免重复代码,例如通过使用集合来统一处理ID的检查和记录。
  6. KISS原则(Keep It Simple, Stupid):

    • 保持代码简单,避免过度设计,例如使用简单的数据结构和直接的逻辑处理。
  7. YAGNI原则(You Ain't Gonna Need It):

    • 仅实现当前需要的功能,避免过度工程化,例如不预先设计复杂的数据结构,而是根据实际需求逐步优化。
  8. 单一职责原则(Single Responsibility Principle):

    • 每个函数或模块只负责一个功能,例如 is_prime 函数只负责判断素数,rank_dict 只负责存储排名信息。
  9. 开闭原则(Open/Closed Principle):

  • 对扩展开放,对修改关闭。例如,如果需要增加新的奖励类型,只需修改奖励类型的判断逻辑,而不需要修改整体的查询处理流程。

通过这些哲学和编程思想的应用,代码不仅在性能上得到了优化,而且在可读性、可维护性和扩展性上也得到了提升。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

用哲学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值