我的AI成长之路(二)-线性模型的学习一

前言

线性模型也是机器学习中最为基础的模型,很多复杂模型均可认为由线性模型衍生而得。

一、线性模型

1.1 基本形式

给定由 d个属性描述的示例 x = (X1;X2;…;Xd), 其中Xi是X在第i个属性上的取值,线性模型 (linear model)试图学得一个通过属性的线性组合来进行 预测的函数,即

f(x) = ω1X1 + ω2X2 十 …+ωdXd + b

一般用向量形式写成

f(x) = ωTx+b

举一个西瓜书的例子
若在想买一个好瓜,他的判定标准用线性模型表示在这里插入图片描述则意味着可 通过综合考虑色泽、根蒂和敲声来判断瓜好不好,其中根蒂最要紧,而敲声比 色泽更重要.

二、单变量线性回归(Linear Regression with One Variable)

在学之前我们先学一个定义-什么是回归
以下解答来自百度百科

回归分析是研究某一变量(因变量)与另一个或多个变量(解释变量、自变量)之间的依存关系,用解释变量的已知值或固定值来估计或预测因变量的总体平均值

1.1 定义

单变量线性回归又称为一元线性回归,是分析只有一个自变量(自变量x和因变量y)线性相关关系的方法。
以下图房产价格举例子
在这里插入图片描述
我们要使用一个数据集,数据集包含俄勒冈州波特兰市的住房价格。在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集。比方说,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱。那么,你可以做的一件事就是构建一个模型,也许是条直线,可以用** y = ax + b** 来表示,从这个数据模型上来看,也许你可以告诉你的朋友,他能以大约220000(美元)左右的价格卖掉这个房子。

三、损失函数

3.1 定义

在上面预测房价的例子中,我们定义了一个线性函数,我们需要选择合适的参数a和b用来减少模型预测值和实际值之间的差距,在房价问题这个例子中便是直线的斜率和在y轴上的截距。
在这里插入图片描述
模型所预测的值与训练集中实际值之间的差距(图中蓝线表示)就是建模误差(modeling error)。为了让建模误差最小,我们需要引入一个新的名词–代价函数

代价函数是用于衡量模型预测值与实际值之间的差异,从而评估模型的性能。通过最小化代价函数,我们可以找到最优的模型参数,使模型在训练数据上的表现尽可能好。

3.2 常见的代价函数

以下是一些常见的代价函数以及它所适用的场景
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 均方误差

在这里插入图片描述
解释一下上图,我们有一个一元线性函数,他的参数是θ0和θ1,他的代价函数是J(θ0,θ1),我们的目标就是获取最小化的均方误差
在这里插入图片描述
其中θ0是一个常数,θ1是一个变量,求取最佳的θ0,使θ0=0,此时函数f只跟θ1相关即f(x)=θ1x,J函数会简化为J(θ1),也只跟θ1相关。
在左图中,当θ1=1的时候,如浅蓝线所画,此时J(θ1) = (0² + 0² + 0²)/ 2M = 0。
在右图,列出了当横轴θ1取不同的数值时,纵轴J(θ1)对应的值,由此可见当θ1=0的时候,J(θ1)最小为0.
在这里我们获得了,当θ0=0,θ1=1的时候,能获取最小均方误差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值