一、大纲
-
数据预处理
- 数据清洗:去除噪音数据,如非法字符、无意义字符等
- 分词和词性标注:使用中文分词工具,对文本进行分词和词性标注
- 停用词去除:移除无实际意义的高频词
- 数据格式化:对数据进行统一的格式化处理
-
文本特征抽取
- 词频分析:统计词频、逆文档频率(TF-IDF)等特征
- 主题分析:运用潜在狄利克雷分布(LDA)等主题模型,识别文本潜在主题
- 情感分析:利用情感词典,对评论情感倾向进行分析
-
文本聚类分析
- 基于关键词的聚类:使用K-Means等聚类算法,根据词频等特征对评论进行聚类
- 基于主题的聚类:利用主题模型的主题分布,对评论进行主题聚类
-
文本分类
- 监督学习分类:采用朴素贝叶斯、支持向量机等算法,基于标签数据对评论进行分类
- 无监督聚类分类:利用聚类结果,对评论进行无监督的分类
-
可视化呈现
- 词云:展示高频词汇
- 主题分布:展示评论的主题分布
- 情感分布:展示评论的正负面情感分布
- 评论热点:展示受关注的热点话题
-
商业洞察
- 分析用户评价特征:了解用户对产品的评价特点
- 发现用户需求:根据评论内容,挖掘用户的需求和痛点
- 跟踪口碑变化:监测产品口碑的变化趋势