python运行使用gpu运算【python基础】python开启GPU加速

本文介绍了如何确认CUDA是否安装成功,并提供了详细的步骤说明如何在Python环境中配置GPU进行计算任务,包括设置环境变量、将模型放置到GPU上以及调整训练过程以利用GPU资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.首先需要确认是否成功安装cuda,代码见图一;打印结果如图二所示。

 图一

 

图二 

2.如果未安装成功可以自行搜索,不麻烦;安装成功后需要分三步设置使用GPU,以简单的softmax分类器为例:

a.导入os模块

import os

#指定参与运算的显卡为GPU1,这个需要自己进系统管理器查看自己的显卡是GPU序号
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'

b.将模型放进GPU中运算。

 c.更改训练、测试两个步骤,使用GPU运算。

 

 

### 配置 Python 在 Windows 上使用 GPU 的方法 要在 Windows 系统中配置 Python 以利用 GPU 运行代码,需要完成以下几个方面的准备工作: #### 安装支持 GPU 加速的库 为了实现 GPU 计算加速,可以安装 TensorFlow 或 PyTorch 的 GPU 版本。以下是两种主要方式的具体操作说明。 1. **安装 TensorFlow-GPU** 可通过 `pip` 工具直接安装 TensorFlow 的 GPU 支持版本。执行以下命令即可完成安装: ```bash pip install tensorflow-gpu ``` 此外,在安装前需确认已满足 CUDA 和 cuDNN 的依赖条件[^1]。 2. **安装 PyTorch-GPU** 对于 PyTorch,推荐从官方提供的预编译二进制文件进行安装。可以通过访问官网获取适合当前环境的安装指令。例如,对于 Windows 用户,默认建议如下命令: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 如果采用本地安装的方式,则可参考相关文档中的指导步骤[^3]。 #### 设置 GPU 设备管理 在实际编写程序时,还需要明确指定哪些 GPU 被用于运算以及如何分配资源给不同的进程。 1. **检测可用 GPU 并设定优先级** 利用 NVIDIA 提供的工具 `nvidia-smi` 查看当前系统的 GPU 占用状态,并挑选出未被占用或负载较低的一台或多台设备作为目标硬件平台[^4]。 2. **编程接口调用** 不同框架提供了各自的 API 来控制具体的 GPU 使用策略。比如,在 TensorFlow 中可通过设置环境变量来限定使用的显卡编号;而在 PyTorch 下则可以直接修改 `.to()` 方法参数指向特定索引号上的图形处理器实例。 ```python import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" # 同时启用第0号和第1号GPU ``` 以上就是关于如何在 Windows 环境下让 Python 应用充分利用 GPU 性能的一些基本指南[^2]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值