EAST-resnet_v1

前言

继续写残差网络,这里读了好几篇其他人的文章才搞明白,搞明白以后着手开始写这篇文章,有神魔错误望指出。

全篇代码

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for the original form of Residual Networks.

The 'v1' residual networks (ResNets) implemented in this module were proposed
by:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385

Other variants were introduced in:
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Identity Mappings in Deep Residual Networks. arXiv: 1603.05027

The networks defined in this module utilize the bottleneck building block of
[1] with projection shortcuts only for increasing depths. They employ batch
normalization *after* every weight layer. This is the architecture used by
MSRA in the Imagenet and MSCOCO 2016 competition models ResNet-101 and
ResNet-152. See [2; Fig. 1a] for a comparison between the current 'v1'
architecture and the alternative 'v2' architecture of [2] which uses batch
normalization *before* every weight layer in the so-called full pre-activation
units.

Typical use:

   from tensorflow.contrib.slim.nets import resnet_v1

ResNet-101 for image classification into 1000 classes:

   # inputs has shape [batch, 224, 224, 3]
   with slim.arg_scope(resnet_v1.resnet_arg_scope()):
      net, end_points = resnet_v1.resnet_v1_101(inputs, 1000, is_training=False)

ResNet-101 for semantic segmentation into 21 classes:

   # inputs has shape [batch, 513, 513, 3]
   with slim.arg_scope(resnet_v1.resnet_arg_scope()):
      net, end_points = resnet_v1.resnet_v1_101(inputs,
                                                21,
                                                is_training=False,
                                                global_pool=False,
                                                output_stride=16)
"""
# from __future__ import absolute_import
# from __future__ import division
# from __future__ import print_function

import tensorflow as tf
from tensorflow.contrib import slim

from . import resnet_utils

resnet_arg_scope = resnet_utils.resnet_arg_scope


@slim.add_arg_scope
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1,
               outputs_collections=None, scope=None):
    """Bottleneck residual unit variant with BN after convolutions.

    This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
    its definition. Note that we use here the bottleneck variant which has an
    extra bottleneck layer.

    When putting together two consecutive ResNet blocks that use this unit, one
    should use stride = 2 in the last unit of the first block.

    Args:
      inputs: A tensor of size [batch, height, width, channels].
      depth: The depth of the ResNet unit output.
      depth_bottleneck: The depth of the bottleneck layers.
      stride: The ResNet unit's stride. Determines the amount of downsampling of
        the units output compared to its input.
      rate: An integer, rate for atrous convolution.
      outputs_collections: Collection to add the ResNet unit output.
      scope: Optional variable_scope.

    Returns:
      The ResNet unit's output.
    """
    with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(inputs, depth, [1, 1], stride=stride,
                                   activation_fn=None, scope='shortcut')

        residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1,
                               scope='conv1')
        residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
                                            rate=rate, scope='conv2')
        residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                               activation_fn=None, scope='conv3')

        output = tf.nn.relu(shortcut + residual)

        return slim.utils.collect_named_outputs(outputs_collections,
                                                sc.original_name_scope,
                                                output)


def resnet_v1(inputs,
              blocks,
              num_classes=None,
              is_training=True,
              global_pool=True,
              output_stride=None,
              include_root_block=True,
              spatial_squeeze=True,
              reuse=None,
              scope=None):
    """Generator for v1 ResNet models.

    This function generates a family of ResNet v1 models. See the resnet_v1_*()
    methods for specific model instantiations, obtained by selecting different
    block instantiations that produce ResNets of various depths.

    Training for image classification on Imagenet is usually done with [224, 224]
    inputs, resulting in [7, 7] feature maps at the output of the last ResNet
    block for the ResNets defined in [1] that have nominal stride equal to 32.
    However, for dense prediction tasks we advise that one uses inputs with
    spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In
    this case the feature maps at the ResNet output will have spatial shape
    [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1]
    and corners exactly aligned with the input image corners, which greatly
    facilitates alignment of the features to the image. Using as input [225, 225]
    images results in [8, 8] feature maps at the output of the last ResNet block.

    For dense prediction tasks, the ResNet needs to run in fully-convolutional
    (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all
    have nominal stride equal to 32 and a good choice in FCN mode is to use
    output_stride=16 in order to increase the density of the computed features at
    small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915.

    Args:
      inputs: A tensor of size [batch, height_in, width_in, channels].
      blocks: A list of length equal to the number of ResNet blocks. Each element
        is a resnet_utils.Block object describing the units in the block.
      num_classes: Number of predicted classes for classification tasks. If None
        we return the features before the logit layer.
      is_training: whether is training or not.
      global_pool: If True, we perform global average pooling before computing the
        logits. Set to True for image classification, False for dense prediction.
      output_stride: If None, then the output will be computed at the nominal
        network stride. If output_stride is not None, it specifies the requested
        ratio of input to output spatial resolution.
      include_root_block: If True, include the initial convolution followed by
        max-pooling, if False excludes it.
      spatial_squeeze: if True, logits is of shape [B, C], if false logits is
          of shape [B, 1, 1, C], where B is batch_size and C is number of classes.
      reuse: whether or not the network and its variables should be reused. To be
        able to reuse 'scope' must be given.
      scope: Optional variable_scope.

    Returns:
      net: A rank-4 tensor of size [batch, height_out, width_out, channels_out].
        If global_pool is False, then height_out and width_out are reduced by a
        factor of output_stride compared to the respective height_in and width_in,
        else both height_out and width_out equal one. If num_classes is None, then
        net is the output of the last ResNet block, potentially after global
        average pooling. If num_classes is not None, net contains the pre-softmax
        activations.
      end_points: A dictionary from components of the network to the corresponding
        activation.

    Raises:
      ValueError: If the target output_stride is not valid.
    """
    with tf.variable_scope(scope, 'resnet_v1', [inputs], reuse=reuse) as sc:
        end_points_collection = sc.name + '_end_points'
        with slim.arg_scope([slim.conv2d, bottleneck,
                             resnet_utils.stack_blocks_dense],
                            outputs_collections=end_points_collection):
            with slim.arg_scope([slim.batch_norm], is_training=is_training):
                net = inputs
                if include_root_block:
                    if output_stride is not None:
                        if output_stride % 4 != 0:
                            raise ValueError('The output_stride needs to be a multiple of 4.')
                        output_stride /= 4
                    net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')

                    net = slim.utils.collect_named_outputs(end_points_collection, 'pool2', net)

                net = resnet_utils.stack_blocks_dense(net, blocks, output_stride)

                end_points = slim.utils.convert_collection_to_dict(end_points_collection)

                # end_points['pool2'] = end_points['resnet_v1_50/pool1/MaxPool:0']
                try:
                    end_points['pool3'] = end_points['resnet_v1_50/block1']
                    end_points['pool4'] = end_points['resnet_v1_50/block2']
                except:
                    end_points['pool3'] = end_points['Detection/resnet_v1_50/block1']
                    end_points['pool4'] = end_points['Detection/resnet_v1_50/block2']
                end_points['pool5'] = net
                # if global_pool:
                #     # Global average pooling.
                #     net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True)
                # if num_classes is not None:
                #     net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                #                       normalizer_fn=None, scope='logits')
                # if spatial_squeeze:
                #     logits = tf.squeeze(net, [1, 2], name='SpatialSqueeze')
                # else:
                #     logits = net
                # # Convert end_points_collection into a dictionary of end_points.
                # end_points = slim.utils.convert_collection_to_dict(end_points_collection)
                # if num_classes is not None:
                #     end_points['predictions'] = slim.softmax(logits, scope='predictions')
                return net, end_points


resnet_v1.default_image_size = 224


def resnet_v1_50(inputs,
                 num_classes=None,
                 is_training=True,
                 global_pool=True,
                 output_stride=None,
                 spatial_squeeze=True,
                 reuse=None,
                 scope='resnet_v1_50'):
    """ResNet-50 model of [1]. See resnet_v1() for arg and return description."""
    blocks = [
        resnet_utils.Block(
            'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
        resnet_utils.Block(
            'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
        resnet_utils.Block(
            'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]),
        resnet_utils.Block(
            'block4', bottleneck, [(2048, 512, 1)] * 3)
    ]
    return resnet_v1(inputs, blocks, num_classes, is_training,
                     global_pool=global_pool, output_stride=output_stride,
                     include_root_block=True, spatial_squeeze=spatial_squeeze,
                     reuse=reuse, scope=scope)


resnet_v1_50.default_image_size = resnet_v1.default_image_size


def resnet_v1_101(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
                  spatial_squeeze=True,
                  reuse=None,
                  scope='resnet_v1_101'):
    """ResNet-101 model of [1]. See resnet_v1() for arg and return description."""
    blocks = [
        resnet_utils.Block(
            'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
        resnet_utils.Block(
            'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
        resnet_utils.Block(
            'block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)]),
        resnet_utils.Block(
            'block4', bottleneck, [(2048, 512, 1)] * 3)
    ]
    return resnet_v1(inputs, blocks, num_classes, is_training,
                     global_pool=global_pool, output_stride=output_stride,
                     include_root_block=True, spatial_squeeze=spatial_squeeze,
                     reuse=reuse, scope=scope)


resnet_v1_101.default_image_size = resnet_v1.default_image_size


def resnet_v1_152(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
                  spatial_squeeze=True,
                  reuse=None,
                  scope='resnet_v1_152'):
    """ResNet-152 model of [1]. See resnet_v1() for arg and return description."""
    blocks = [
        resnet_utils.Block(
            'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
        resnet_utils.Block(
            'block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]),
        resnet_utils.Block(
            'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
        resnet_utils.Block(
            'block4', bottleneck, [(2048, 512, 1)] * 3)]
    return resnet_v1(inputs, blocks, num_classes, is_training,
                     global_pool=global_pool, output_stride=output_stride,
                     include_root_block=True, spatial_squeeze=spatial_squeeze,
                     reuse=reuse, scope=scope)


resnet_v1_152.default_image_size = resnet_v1.default_image_size


def resnet_v1_200(inputs,
                  num_classes=None,
                  is_training=True,
                  global_pool=True,
                  output_stride=None,
                  spatial_squeeze=True,
                  reuse=None,
                  scope='resnet_v1_200'):
    """ResNet-200 model of [2]. See resnet_v1() for arg and return description."""
    blocks = [
        resnet_utils.Block(
            'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
        resnet_utils.Block(
            'block2', bottleneck, [(512, 128, 1)] * 23 + [(512, 128, 2)]),
        resnet_utils.Block(
            'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]),
        resnet_utils.Block(
            'block4', bottleneck, [(2048, 512, 1)] * 3)]
    return resnet_v1(inputs, blocks, num_classes, is_training,
                     global_pool=global_pool, output_stride=output_stride,
                     include_root_block=True, spatial_squeeze=spatial_squeeze,
                     reuse=reuse, scope=scope)


resnet_v1_200.default_image_size = resnet_v1.default_image_size


if __name__ == '__main__':
    input = tf.placeholder(tf.float32, shape=(None, 224, 224, 3), name='input')
    with slim.arg_scope(resnet_arg_scope()) as sc:
        logits = resnet_v1_50(input)

bottleneck

@slim.add_arg_scope
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1,
               outputs_collections=None, scope=None):
    """Bottleneck residual unit variant with BN after convolutions.

    This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
    its definition. Note that we use here the bottleneck variant which has an
    extra bottleneck layer.

    When putting together two consecutive ResNet blocks that use this unit, one
    should use stride = 2 in the last unit of the first block.

    Args:
      inputs: A tensor of size [batch, height, width, channels].
      depth: The depth of the ResNet unit output.
      depth_bottleneck: The depth of the bottleneck layers.
      stride: The ResNet unit's stride. Determines the amount of downsampling of
        the units output compared to its input.
      rate: An integer, rate for atrous convolution.
      outputs_collections: Collection to add the ResNet unit output.
      scope: Optional variable_scope.

    Returns:
      The ResNet unit's output.
    """
    with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(inputs, depth, [1, 1], stride=stride,
                                   activation_fn=None, scope='shortcut')

        residual = slim.conv2d(inputs, depth_bottleneck, [1, 1], stride=1,
                               scope='conv1')
        residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
                                            rate=rate, scope='conv2')
        residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                               activation_fn=None, scope='conv3')

        output = tf.nn.relu(shortcut + residual)

        return slim.utils.collect_named_outputs(outputs_collections,
                                                sc.original_name_scope,
                                                output)

这块是定义残差快,大致结构如下图:
在这里插入图片描述

resnet_v1

因为我们会用到arg_scope对conv2d、bottleneck和stack_blocks_dense设置默认参数,conv2d本来就可以这样使用,但是bottleneck等新增的函数需要这样使用必须要在函数上方声明@slim.add_arg_scope

 with slim.arg_scope([slim.conv2d, bottleneck,
                             resnet_utils.stack_blocks_dense],
                            outputs_collections=end_points_collection):

这块就是在把参数设置到:

net = block.unit_fn(net,
                                            depth=unit_depth,
                                            depth_bottleneck=unit_depth_bottleneck,
                                            stride=1,
                                            rate=rate)

而在stack_blocks_dense中循环是这样的:

    for block in blocks:
        with tf.variable_scope(block.scope, 'block', [net]) as sc:
            for i, unit in enumerate(block.args):
                if output_stride is not None and current_stride > output_stride:
                    raise ValueError('The target output_stride cannot be reached.')

我们看一下resnet_v1_50的block的结构:

   blocks = [
        resnet_utils.Block(
            'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]),
        resnet_utils.Block(
            'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]),
        resnet_utils.Block(
            'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]),
        resnet_utils.Block(
            'block4', bottleneck, [(2048, 512, 1)] * 3)
    ]

也就是说循环共有3+4+6+3=16次,每次循环残差块的结构,所以供48层。再加上这两层:

net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1')
                    net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1')

所以48+2=50层这就是resnet_v1_50的计算方式。

最后

好了这就是对残差网络的解析了,本人也是小白,如有希望各位大佬不吝赐教

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值