深度学习的数学基础汇总

一、损失函数(*) 系统学习深度学习(八)--损失函数 0-1损失函数 平方损失函数 交叉熵损失函数 当然,还有16年出的center-loss   二、激活函数(*) 深度学习笔记(三):激活函数和损失函数 sigmod tanh relu leaky-relu elu ...

2018-12-05 16:07:11

阅读数 186

评论数 0

机器学习常用方法汇总

0 基本知识 生成模型:朴素贝叶斯、混合高斯模型、隐马尔可夫模型 判别模型:感知机、k近邻法、决策树、逻辑斯蒂回归模型、最大熵模型、支持向量机 (SVM)、boosting方法 (AdaBoost等)、条件随机场 (conditional random field, CRF)、CNN 一、感...

2018-11-29 15:03:00

阅读数 96

评论数 0

轻量级深度学习网络(七):详解轻量级网络总结

本文简单介绍了四个轻量化网络模型,分别是SqueezeNet、 MobileNet、 ShuffleNet和Xception,前三个是真正意义上的轻量化网络,而Xception是为提升网络效率,在同等参数数量条件下获得更高的性能。 在此列出表格,对比四种网络是如何达到网络轻量化的。 网络 ...

2018-11-29 14:50:32

阅读数 365

评论数 0

笔试记录

2018/9/15   顺丰科技  10:00-12:00     题型 一、选择题(36道) 包含计算机组成原理 计算机网络、机器学习 深度学习等内容 二、编程题(2道) 1、判断芝麻是否在面包上,其中面包可以用多边形拟和,输入为: n(拟合面包的多边形点数) 坐标(面包的n个...

2018-11-29 14:49:26

阅读数 85

评论数 0

配置YOLO-v3训练自己的数据---完整版(含常见问题)

目录 0、简介 1、准备--编译darknet 2、测试是否安装成功 3、自己的数据准备 4、修改自己的配置文件 5、训练 6、一些常见问题 0、简介 YOLO一共有3代,这里主要讲第三代的配置,其他的类似。 YOLO-v3使用的是dark-net框架写的代码,dark-net...

2018-11-23 11:29:00

阅读数 3528

评论数 2

人体姿态估计(Human Pose Estimation)---优质学习资源

目录 0、简介 1、2D人体姿态估计 2、3D人体姿态估计 3、其他知识                                           这是一个简单的资源仅供参考 0、简介 姿态估计的目标是在RGB图像或视频中描绘出人体的形状,这是一种多方面任务,其中包含了目标...

2018-09-29 20:19:56

阅读数 3216

评论数 0

深度学习框架详解:汇总

这是初稿,还在修改中!   目录 一、经典的网络结构 1.1LeNet 1.2AlexNet 1.3ZF-Net 1.4VGG-Net 1.5GoogLeNet 1.6ResNet 1.7Densnet 1.8ResNext 1.9DPN 1.10随机深度(Deep ne...

2018-09-28 15:56:46

阅读数 598

评论数 0

感受野计算+卷积/池化输出尺寸计算+卷积参数量计算

目录 1、卷积后输出尺寸的大小 1.1卷积参数量计算 2、池化后输出尺寸大小 3、感受野的计算 鉴于网上资源比较混乱,而且笔试考的多,故作此总结。希望能帮到大家。 1、卷积后输出尺寸的大小 输入:L*L*D 卷积核: 大小size=F*F*d,滑动步长stride=S,0填充 0 ...

2018-09-28 15:26:29

阅读数 451

评论数 0

百度计算机视觉岗笔试题-2018

注:选择题记不清了,简答题和系统设计大致题目如下,程序题也是大致意思,不是原题,原题给了一个实际场景,此处忽略。 笔试时间为2018年9月14日19:00-21:00,用的是赛码网,和牛客网有所区别,爱奇艺用的也是赛码网,只前没用过,所以习惯他的编译器都浪费了很多时间。 一、选择题(30道,6...

2018-09-14 21:07:35

阅读数 1247

评论数 3

卷积原理:几种常用的卷积(标准卷积、深度卷积、组卷积、扩展卷积、反卷积)

  0、标准卷积 默认你已经对卷积有一定的了解,此处不对标准卷积细讲。 举个例子,假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。 那么一般的操作就是用32个3×3的卷积核来分别同输入数据卷积,这样每个卷积核需要3×3×16个参数,得到的输出是只有一个通道的数据。之所以会得到...

2018-09-08 17:48:50

阅读数 1774

评论数 1

详解深度学习之经典网络架构(十):九大框架汇总

目录 0、概览 1、个人心得 2、总结 本文是对本人前面讲的的一些经典框架的汇总。 纯手打,如果有不足之处,可以在评论区里留言。 0、概览 (1)详解深度学习之经典网络架构(一):LeNet (2)详解深度学习之经典网络架构(二):AlexNet (3)详解深度学习之经典网络架构...

2018-09-08 10:44:33

阅读数 3564

评论数 3

opencv图像处理初步(二):实现色彩还原---(白平衡)

 0、说明 目前很多摄像头特别是网络摄像头对色彩的处理情况存在色差,比如一个橙子(是黄色的),但是拍出来的效果会泛白,有点像梨子的颜色,因此要用到色彩校正。 一般色彩校正使用白平衡,白平衡一般又分为:灰世界、完美反射、等,这里不做具体陈述。 此处提供了一种方法,总体原理为(对每个通道而言):...

2018-09-07 17:51:04

阅读数 2134

评论数 0

详解深度学习之经典网络架构(九):DPN(Dual Path Network)

目录 0、简介 1、优势 2、网络基本结构 3、总结 0、简介 论文:Dual Path Networks 论文链接:https://arxiv.org/abs/1707.01629 代码:https://github.com/cypw/DPNs MXNet框架下可训练模型的DP...

2018-09-06 09:33:26

阅读数 862

评论数 0

详解深度学习之经典网络架构(八):ResNeXt

目录 0、简介 1、优势 2、网络基本结构 3、总结 0、简介 论文:Aggregated Residual Transformations for Deep Neural Networks 论文链接:https://arxiv.org/abs/1611.05431 PyTorch...

2018-09-06 09:09:22

阅读数 713

评论数 0

详解深度学习之经典网络架构(七):DenseNet

目录 0、简介 1、创新点 2、网络基本结构 3、实验结果: 4、总结 0、简介 论文:Densely Connected Convolutional Networks 论文链接:https://arxiv.org/pdf/1608.06993.pdf 代码的github链接:htt...

2018-09-05 10:33:23

阅读数 716

评论数 0

详解深度学习之经典网络架构(六):ResNet 两代(ResNet v1和ResNet v2)

目录 一、ResNet v1 二、ResNet v2 一、ResNet v1 一说起“深度学习”,自然就联想到它非常显著的特点“深、深、深”(重要的事说三遍),通过很深层次的网络实现准确率非常高的图像识别、语音识别等能力。因此,我们自然很容易就想到:深的网络一般会比浅的网络效果好,如果要进...

2018-09-03 10:15:45

阅读数 7342

评论数 7

详解深度学习之经典网络架构(五):GoogLeNet 四代(Inception v1、v2、v3、v4)

目录 0.简介 一、Inception V1 二、Inception V2 三、Inception V3 四、Inception V4 0.简介 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名、VGG获得了...

2018-09-03 09:33:48

阅读数 1951

评论数 0

详解深度学习之经典网络架构(四):VGG-Net

一、简介 VGG全称是Visual Geometry Group属于牛津大学科学工程系,其发布了一些列以VGG开头的卷积网络模型,可以应用在人脸识别、图像分类等方面,分别从VGG16~VGG19。VGG研究卷积网络深度的初衷是想搞清楚卷积网络深度是如何影响大规模图像分类与识别的精度和准确率的,最...

2018-08-31 09:42:35

阅读数 1877

评论数 0

详解深度学习之经典网络架构(三):ZFNet

目录 一、简介 二、网络结构 三、总结 一、简介 由于AlexNet的提出,大型卷积网络开始变得流行起来,但是人们对于网络究竟为什么能表现的这么好,以及怎么样能变得更好尚不清楚,因此为了针对上述两个问题,提出了一个新颖的可视化技术来一窥中间特征层的功能以及分类的操作。 二、网络结构 ...

2018-08-29 10:23:23

阅读数 2477

评论数 0

详解深度学习之经典网络架构(二):AlexNet

目录 一、简介 二、网络结构 1. 使用了Relu激活函数。 2. 标准化(Local Response Normalization) 3. Dropout 4. 数据增强(data augmentation) 三、tensorflow代码实现 一、简介 AlexNet是2012...

2018-08-29 09:56:18

阅读数 2615

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭