笔记—基于特征的运动目标检测与跟踪
图像目标检测的任务是利用成像传感器获取序列图像,通过计算机对序列图像处理,将感兴趣的目标从背景中提取出来,为后续的目标分类识别和跟踪提供基础。目标检测一般包括图像预处理、特征提取、特征匹配和判决四个部分。
对于静态背景图像的运动目标检测,通常多采用基于背景建模和背景差分的运动目标检测算法[1-9].其算法通过采用合适的背景建模尽量获取准确的背景图像,然后利用阈值分割和形态滤波去噪,消除差分图像的噪声和填充目标上的空洞,以改善目标的分割效果。但是这种方法的一个突出问题就是:在复杂背景下难以确切检测出形变和被遮掩的目标目标及灰度特征特别相似的目标.于是,一些新的算法被提出来,包括基于特征的目标检测与跟踪算法[10-12]
-
图像特征点检测算法
通常选用图像中已于确定的某些特殊点作为图像特征点,比如交叉点、角点、高曲率点以及特定区域的中心、重心等。通过提取特征点并用特征点来标识图像中的对象,可以大大减少存储整幅图像的存储量。同时因为特征点分布在整个目标上,因此,即使目标有部分被遮挡,仍可以跟踪到另外一部分特征点,从而保证跟踪的连续性。
目标在发生尺度缩放、平移、旋转以及成像距离和视角发生变换时,仍能够保持其独特性。
(1)稳定性。
(2)有效性。
(3)定位精确性。
(4)尺度关联性。 -
基于SIFT特征的运动目标跟踪
SIFT算法检测特征点采用DoG算法,在获取尺度不变特征点后,需要对其进行SIFT描述,它是一种基于局部三维梯度直方图的描述方法。
基于SIFT特征的目标跟踪算法:利用帧间差分构建背景,采用背景差分法对运动目标进行分割,对分割后的目标进行SIFT特征变换,避免了对整幅图像进行SIFT变换,大大减少了计算量;最后利用目标的特征匹配结果进行运动分析,有利于提高目标跟踪系统的适应性、容错性和鲁棒性。
《现代视频图像弱小目标检测导论》朱振福 第15章基于特征的运动目标检测与跟踪p270