内容来源
保险风险与破产(原书第二版)科学出版社
这段介绍是网上搜的,不是书里的
帕累托分布起源于19世纪末,由意大利经济学家维尔弗雷多·帕累托(Vilfredo Pareto)提出。
帕累托在研究财富分配时发现,大多数财富集中在少数人手中,这一现象后来被他概括为著名的“二八定律”(The 80-20 rule)
帕累托分布的曲线形状可以直观地展示出”二八定律”(也称帕累托定律),即大多数结果通常由少数关键因素所决定。
帕累托(pareto)分布
符号说明
将参数为 α > 0 \alpha>0 α>0 和 λ > 0 \lambda>0 λ>0 的帕累托分布记作 P a ( α , λ ) Pa(\alpha,\lambda) Pa(α,λ)
密度函数
f ( x ) = α λ α ( λ + x ) α + 1 , x > 0 f(x)=\frac{\alpha\lambda^{\alpha}}{(\lambda+x)^{\alpha+1}},x>0 f(x)=(λ+x)α+1αλα,x>0
分布函数
对密度函数积分,得
F ( x ) = 1 − ( λ λ + x ) α , x ⩾ 0 F(x)=1-\left(\frac{\lambda}{\lambda+x}\right)^\alpha,x\geqslant0 F(x)=1−(λ+xλ)α,x⩾0
期望和方差
帕累托分布的矩与其他分布不同,矩的存在性与参数 α \alpha α 有关
由于密度函数在 ( 0 , ∞ ) (0,\infty) (0,∞) 上的积分等于 1 1 1 ,得
∫ 0 ∞ d x ( λ + x ) α + 1 = 1 α λ α \int^\infty_0\frac{\mathrm{d}x}{(\lambda+x)^{\alpha+1}}= \frac{1}{\alpha\lambda^{\alpha}} ∫0∞(λ+x)α+1dx=αλα1
注意上式在 α > 0 \alpha>0 α>0 时成立
E [ X ] = ∫ 0 ∞ x f ( x ) d x = ∫ 0 ∞ ( x + λ − λ ) f ( x ) d x = ∫ 0 ∞ ( x + λ ) f ( x ) d x − λ ∫ 0 ∞ f ( x ) d x = ∫ 0 ∞ α λ α ( λ + x ) α d x − λ = α λ α − 1 ∫ 0 ∞ ( α − 1 ) λ α − 1 ( λ + x ) α d x − λ \begin{align*} E[X]&=\int^\infty_0xf(x)\mathrm{d}x\\ &=\int^\infty_0(x+\lambda-\lambda)f(x)\mathrm{d}x\\ &=\int^\infty_0(x+\lambda)f(x)\mathrm{d}x- \lambda\int^\infty_0f(x)\mathrm{d}x\\ &=\int^\infty_0\frac{\alpha\lambda^{\alpha}}{(\lambda+x)^{\alpha}} \mathrm{d}x-\lambda\\ &=\frac{\alpha\lambda}{\alpha-1} \int^\infty_0\frac{(\alpha-1)\lambda^{\alpha-1}} {(\lambda+x)^{\alpha}} \mathrm{d}x-\lambda\\ \end{align*} E[X]=∫0∞xf(x)dx=∫0∞(x+λ−λ)f(x)dx=∫0∞(x+λ)f(x)dx−λ∫0∞f(x)dx=∫0∞(λ+x)ααλαdx−λ=α−1αλ∫0∞(λ+x)α(α−1)λα−1dx−λ
令 α > 1 \alpha>1 α>1 ,那么上式中的积分值为 1 1 1 ,得
E [ X ] = α λ α − 1 − λ = λ α − 1 E[X]=\frac{\alpha\lambda}{\alpha-1}-\lambda =\frac{\lambda}{\alpha-1} E[X]=α−1αλ−λ=α−1λ
类似的, E [ X 2 ] E[X^2] E[X2] 可由下面的结果得到
E [ X 2 ] = ∫ 0 ∞ [ ( x + λ ) 2 − 2 λ x − λ 2 ] f ( x ) d x = ∫ 0 ∞ ( x + λ ) 2 f ( x ) d x − 2 λ E [ X ] − λ 2 \begin{align*} E[X^2]&=\int^\infty_0[(x+\lambda)^2-2\lambda x-\lambda^2] f(x)\mathrm{d}x\\ &=\int^\infty_0(x+\lambda)^2f(x)\mathrm{d}x -2\lambda E[X]-\lambda^2\\ \end{align*} E[X2]=∫0∞[(x+λ)2−2λx−λ2]f(x)dx=∫0∞(x+λ)2f(x)dx−2λE[X]−λ2
仿照 E [ x ] E[x] E[x] 的计算过程,当 α > 2 \alpha>2 α>2 时可得
E [ X 2 ] = 2 λ 2 ( α − 1 ) ( α − 2 ) E[X^2]=\frac{2\lambda^2}{(\alpha-1)(\alpha-2)} E[X2]=(α−1)(α−2)2λ2
所以
V a r [ X ] = α λ 2 ( α − 1 ) 2 ( α − 2 ) Var[X]=\frac{\alpha\lambda^2}{(\alpha-1)^2(\alpha-2)} Var[X]=(α−1)2(α−2)αλ2