帕累托(pareto)分布

内容来源

保险风险与破产(原书第二版)科学出版社


这段介绍是网上搜的,不是书里的

帕累托分布起源于19世纪末,由意大利经济学家维尔弗雷多·帕累托(Vilfredo Pareto)提出。

帕累托在研究财富分配时发现,大多数财富集中在少数人手中,这一现象后来被他概括为著名的“二八定律”(The 80-20 rule)

帕累托分布的曲线形状可以直观地展示出”二八定律”(也称帕累托定律),即大多数结果通常由少数关键因素所决定。


帕累托(pareto)分布

符号说明

将参数为 α > 0 \alpha>0 α>0 λ > 0 \lambda>0 λ>0 的帕累托分布记作 P a ( α , λ ) Pa(\alpha,\lambda) Pa(α,λ)

密度函数

f ( x ) = α λ α ( λ + x ) α + 1 , x > 0 f(x)=\frac{\alpha\lambda^{\alpha}}{(\lambda+x)^{\alpha+1}},x>0 f(x)=(λ+x)α+1αλα,x>0

分布函数

对密度函数积分,得

F ( x ) = 1 − ( λ λ + x ) α , x ⩾ 0 F(x)=1-\left(\frac{\lambda}{\lambda+x}\right)^\alpha,x\geqslant0 F(x)=1(λ+xλ)α,x0

期望和方差

帕累托分布的矩与其他分布不同,矩的存在性与参数 α \alpha α 有关

由于密度函数在 ( 0 , ∞ ) (0,\infty) (0,) 上的积分等于 1 1 1 ,得

∫ 0 ∞ d x ( λ + x ) α + 1 = 1 α λ α \int^\infty_0\frac{\mathrm{d}x}{(\lambda+x)^{\alpha+1}}= \frac{1}{\alpha\lambda^{\alpha}} 0(λ+x)α+1dx=αλα1

注意上式在 α > 0 \alpha>0 α>0 时成立

E [ X ] = ∫ 0 ∞ x f ( x ) d x = ∫ 0 ∞ ( x + λ − λ ) f ( x ) d x = ∫ 0 ∞ ( x + λ ) f ( x ) d x − λ ∫ 0 ∞ f ( x ) d x = ∫ 0 ∞ α λ α ( λ + x ) α d x − λ = α λ α − 1 ∫ 0 ∞ ( α − 1 ) λ α − 1 ( λ + x ) α d x − λ \begin{align*} E[X]&=\int^\infty_0xf(x)\mathrm{d}x\\ &=\int^\infty_0(x+\lambda-\lambda)f(x)\mathrm{d}x\\ &=\int^\infty_0(x+\lambda)f(x)\mathrm{d}x- \lambda\int^\infty_0f(x)\mathrm{d}x\\ &=\int^\infty_0\frac{\alpha\lambda^{\alpha}}{(\lambda+x)^{\alpha}} \mathrm{d}x-\lambda\\ &=\frac{\alpha\lambda}{\alpha-1} \int^\infty_0\frac{(\alpha-1)\lambda^{\alpha-1}} {(\lambda+x)^{\alpha}} \mathrm{d}x-\lambda\\ \end{align*} E[X]=0xf(x)dx=0(x+λλ)f(x)dx=0(x+λ)f(x)dxλ0f(x)dx=0(λ+x)ααλαdxλ=α1αλ0(λ+x)α(α1)λα1dxλ

α > 1 \alpha>1 α>1 ,那么上式中的积分值为 1 1 1 ,得

E [ X ] = α λ α − 1 − λ = λ α − 1 E[X]=\frac{\alpha\lambda}{\alpha-1}-\lambda =\frac{\lambda}{\alpha-1} E[X]=α1αλλ=α1λ

类似的, E [ X 2 ] E[X^2] E[X2] 可由下面的结果得到

E [ X 2 ] = ∫ 0 ∞ [ ( x + λ ) 2 − 2 λ x − λ 2 ] f ( x ) d x = ∫ 0 ∞ ( x + λ ) 2 f ( x ) d x − 2 λ E [ X ] − λ 2 \begin{align*} E[X^2]&=\int^\infty_0[(x+\lambda)^2-2\lambda x-\lambda^2] f(x)\mathrm{d}x\\ &=\int^\infty_0(x+\lambda)^2f(x)\mathrm{d}x -2\lambda E[X]-\lambda^2\\ \end{align*} E[X2]=0[(x+λ)22λxλ2]f(x)dx=0(x+λ)2f(x)dx2λE[X]λ2

仿照 E [ x ] E[x] E[x] 的计算过程,当 α > 2 \alpha>2 α>2 时可得

E [ X 2 ] = 2 λ 2 ( α − 1 ) ( α − 2 ) E[X^2]=\frac{2\lambda^2}{(\alpha-1)(\alpha-2)} E[X2]=(α1)(α2)2λ2

所以

V a r [ X ] = α λ 2 ( α − 1 ) 2 ( α − 2 ) Var[X]=\frac{\alpha\lambda^2}{(\alpha-1)^2(\alpha-2)} Var[X]=(α1)2(α2)αλ2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值