CF 625D 树状数组

CF 625D 树状数组

题意:给N条线段,保证它们的右端点互不相同,对于每条线段,求它覆盖的线段的数量。 1=<N<=2e5 -1e9 ≤ li < ri ≤ 1e9

思路:用结构体存下所有线段的左端点和右端点以及下标,然后对结构体进行排序,使右端点从小到大排序,对右端点离散化(f [ i ] . r = i)。然后按左端点递减重新排序,如果两个左端点相等,则使右端点小的排在前面,最后就套用树状数组不断更新sum数组就可以了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<string>
#include<iostream>
typedef long long LL;
using namespace std;
int t,n,m;
const int maxx=2e5+10;
int sum[maxx];
int ans[maxx];
struct node
{
    int l,r,op;
}f[maxx];
bool cmp(node x,node y)
{
    return x.r<y.r;
}
bool cmd(node x,node y)
{
    if(x.l!=y.l)
        return x.l>y.l;
    return x.r<y.r;
}
int low_bit(int x)
{
    return x &(-x);
}
void  update(int xx)
{
    while(xx<=n)
    {
        sum[xx]++;
        xx+=low_bit(xx);
    }
}
int query(int x)
{
    int ans = 0;
    while(x>0)
    {
        ans+=sum[x];
        x-=low_bit(x);
    }
    return ans ;
}
int main()
{
    scanf("%d",&n);
    memset(sum,0,sizeof(sum));
    for(int i=1;i<=n;i++)
    {
        scanf("%d%d",&f[i].l,&f[i].r);
        f[i].op=i;
    }
    sort(f+1,f+n+1,cmp);
    for(int i=1;i<=n;i++)
    {
        f[i].r=i;
    }
    sort(f+1,f+n+1,cmd);
    for(int i=1;i<=n;i++)
    {
        ans[f[i].op]=query(f[i].r);
        update(f[i].r);
    }
    for(int i=1;i<=n;i++)
    {
        printf("%d\n",ans[i]);
    }
 
}

好久没写树状数组了打得有点艰难,吓得我赶紧又去写了一道模板题,祝大家天天AC ^ ^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值